圖3-6和圖3-7所示分別為輸出端電壓值和電壓紋波(圖中橫縱坐標分別為時間和電壓),經過PID閉環反饋后,輸出電壓值的紋波系數可達0.16%。因為本仿真實驗中只加入了電壓單閉環反饋,進一步提高精度需要再在外環加入電流反饋環。仿真電路很好的驗證了試驗參數計算的正確性和合理性,在本電路的初步設計中可以按照仿真電路中參數進行實驗電路的搭建。傳統的控制技術多是以模擬電路為基礎的,其固有的缺陷是顯而易見的, 比如 電路本身復雜、模擬器件本身存在差異性、溫漂明顯、不可編程性。基于這些固有 的缺點,數字化的控制技術優勢便展現出來。從上述兩個關系,我們可以清楚地說,比較高的電壓將累積在**小的電容器。蘇州新能源電壓傳感器聯系方式
基于移相全橋的工作原理,變壓器副邊占空比的丟失是其固有的特性。副邊占空比丟失是指變壓器副邊的占空比比原邊的占空比小。不同于其他全橋的橋臂開關管的導通過程,移相全橋的對稱橋臂上的開關管導通和關斷過程始終是不同步的,并且在實際的調整輸出的大小就是通過調整不同步的程度。只要存在不同步,則變壓器副邊輸出電壓就會在不同步的時段內變為零,從占空比的角度來說是變壓器副邊占空比的丟失,并且原邊不同步的程度直接影響變壓器副邊占空比的丟失程度。深圳內阻測試儀電壓傳感器價格大全電壓傳感器可以確定交流電壓或直流電壓電平。
由移相全橋電路的拓撲結構圖可以看到,四個橋臂上每個開關管都并聯有諧振電容,諧振電容的存在可以實現開關管的零電壓關斷。所以我們只需要關心開關管的零電壓開通,要實現開關管的零電壓開通,必須在開關管觸發開通前,有足夠的能量中和掉諧振電容上的電荷,并且要完成該開關管同一橋臂上另一開關管諧振電容的充電,同時還要有能量去抽走變壓器原邊寄生電容中儲存的能量。超前橋臂上兩個開關管工作狀態是相同的,**是開通關斷時間的存在先后, 可以選取其中的T2 管分析。 T2 管觸發開通的前一個狀態,滿足零電壓 開通則須在觸發開通時與T2 并聯的續流二極管D2 已處于導通狀態,這就要求此時諧 振電容C2 已經放電完成。
基于以上對移相全橋原理上的分析,本章就主電路的前端整流濾波電路、移相全橋逆變環節、輸出端整流電路和濾波電路進行參數設計。在進行所有參數計算前,我們對從電網所取的電以及初步整流后的電能參數進行計算,為后續計算做準備。一般可以采用下述經驗算法:輸入電網交流電時,若采用單相整流,整流濾波后的直流電壓的脈動值VPP是比較低輸入交流電峰值的20%~25%,這里取值VPP=20%Vin。我們提供給后續變換電路的電源是從電網中取電,如此就涉及到輸入整流環節。整流電路是直接購置整流橋,進行兩相整流。參數計算即是前端儲能濾波電容的參數設計。接下來,我們可以討論兩個串聯電容器的電壓劃分。
為移相全橋逆變部分的 Simulink 仿真電路。負載等效至原邊用等值電阻代替,仿真主要調節諧振電容和諧振電感的參數,以滿足所有開關管的零開通和軟關斷。依次為開關管驅動波形、橋臂上電壓波形和橋臂上電流波形。其中驅動波形中從低到高分別為開關管1、2、3、4的驅動波形(四個驅動的幅值有差別只為了便于分辨,實際驅動效果是相同的)。同一橋臂上兩開關管驅動有4μS的死區時間,滯后橋臂相對于超前橋臂的滯后時間為12.5μS。橋臂上是串聯的3a電阻和100μH電感,如果不存在移相,則橋臂上的電壓應該是*有死區時間是0。由于移相角的存在,電壓占空比進一步減小,減小的程度對應是移相角的大小。有兩種方法可以將敏感元件的電阻轉換為電壓。佛山電壓傳感器
電壓傳感器相對于傳統測量技術的優勢。蘇州新能源電壓傳感器聯系方式
在本設計中為防止單臂直通設置了兩路保護:1)在超前橋臂和滯后橋臂上分別放置電流霍爾分辨監測兩橋臂上的電流值,電流霍爾的輸出端連接至保護電路。如果出現過電流則保護電路**終動作于PWM波輸出模塊,將4路輸出PWM波的比較器鎖死,使得輸出為低電平,進而關斷橋臂上4個開關管。2)驅動電路模塊內部有過流監測。在所設計的驅動電路中,主驅動芯片M57962內部有保護電路監測IGBT的飽和壓降從而判斷是否過流。當出現過流時M57962將***驅動信號實現對IGBT的關斷。蘇州新能源電壓傳感器聯系方式