為移相全橋逆變部分的 Simulink 仿真電路。負載等效至原邊用等值電阻代替,仿真主要調節諧振電容和諧振電感的參數,以滿足所有開關管的零開通和軟關斷。依次為開關管驅動波形、橋臂上電壓波形和橋臂上電流波形。其中驅動波形中從低到高分別為開關管1、2、3、4的驅動波形(四個驅動的幅值有差別只為了便于分辨,實際驅動效果是相同的)。同一橋臂上兩開關管驅動有4μS的死區時間,滯后橋臂相對于超前橋臂的滯后時間為12.5μS。橋臂上是串聯的3a電阻和100μH電感,如果不存在移相,則橋臂上的電壓應該是*有死區時間是0。由于移相角的存在,電壓占空比進一步減小,減小的程度對應是移相角的大小。板之間的磁場將創建一個完整的交流電路沒有任何硬件連接。北京新能源汽車電壓傳感器廠家供應
本項目逆變橋臂上有4個開關管,對應需要四個**的驅動電路。可選用的驅動電路有很多種,以驅動電路和IGBT的連接方式可以將驅動電路分為直接驅動、隔離驅動和集成化驅動。在此我們采用集成化驅動,因為相對于分立元件構成的驅動電路,集成化驅動電路集成度更高、速度快、抗干擾強、有保護功能模塊,并且也減小了設計的難度[25]。**終選用集成驅動電路M57962,如圖4-3和4-4所示為M57962L驅動電路和驅動信號放大效果圖。M57962 是 N 溝道大功率 IGBT 驅動電路,可以驅動 1200V/400A 大功率 IGBT, 采用快速型光耦合器實現電氣隔離,輸入輸出隔離電壓高達 2500V。北京新能源汽車電壓傳感器廠家供應在這兩個板之間保留著一個非導體。
諧振電感參數確定后即是實物的設計,同上一小節中高頻變壓器的設計類似,諧振電感的設計也是首先選擇磁芯,然后根據氣隙的大小計算繞組匝數,根據流通的電流有效值確定線徑,***核算窗口的面積。如果上述驗證無誤即可進行繞制。為了實現移相全橋變換器的超前橋臂和滯后橋臂上開關管的軟開關,必須根據直流變換器的開關管死區時間和開關頻率來確定全橋變換器的超前橋臂和滯后橋臂上的諧振電容。前面已經講過,超前橋臂和滯后橋臂上的開關管的零電壓開通條件是不同的,所以必須分開計算。
基于以上對移相全橋原理上的分析,本章就主電路的前端整流濾波電路、移相全橋逆變環節、輸出端整流電路和濾波電路進行參數設計。在進行所有參數計算前,我們對從電網所取的電以及初步整流后的電能參數進行計算,為后續計算做準備。一般可以采用下述經驗算法:輸入電網交流電時,若采用單相整流,整流濾波后的直流電壓的脈動值VPP是比較低輸入交流電峰值的20%~25%,這里取值VPP=20%Vin。我們提供給后續變換電路的電源是從電網中取電,如此就涉及到輸入整流環節。整流電路是直接購置整流橋,進行兩相整流。參數計算即是前端儲能濾波電容的參數設計。電壓傳感器和電流傳感器技術的實現已成為傳統電流電壓測量方法的理想選擇。
整個控制板由五個模塊構成:電源模塊、采樣及A/D轉換模塊、DSP控制模塊、PWM輸出模塊、驅動電路模塊。數字控制電路中任何一個芯片的工作都離不開電源,其中DSP芯片和A/D芯片對電源的要求很高,電源發生過電壓、欠電壓、功率不夠或電壓波動等都可能導致芯片不能正常工作甚至損壞。對于任何一個PCB板,電源模塊設計的好壞都直接影響著整個控制板工作的穩定。在設計電源模塊的時候,不僅要為整個控制板提供其所需要的所有幅值的電壓,還要保證每一個幅值的電壓值穩定、紋波小,必要時須電氣隔離,并且電源模塊須功率足夠。但其體積大,頻帶較窄,一般只能用于工頻或其它額定頻率測量,并且具有諧振和輸出不能短路等問題。北京新能源汽車電壓傳感器廠家供應
從上述兩個關系,我們可以清楚地說,比較高的電壓將累積在**小的電容器。北京新能源汽車電壓傳感器廠家供應
前段整流電路直流輸出端并聯了大容量儲能電容,在上電前,電容器初始電壓為零,上電瞬間整流輸出端直流電壓直接加在儲能電容上,電容瞬間相當于短路,形成的瞬時沖擊電流可能達到100A以上對電網帶來沖擊。為了限制上電瞬間大電流的沖擊,在整流輸出端放置一個固態開關。固態開關由晶閘管和限流電阻并聯,其中晶閘管的通斷受DSP的控制,在上電瞬間,晶閘管未被驅動導通,充電電流流過限流電阻,給予電容一定的充電時間,當電容兩端電壓上升后開通晶閘管,相當于將限流電阻短路,由整流電路直接對儲能電容充電[29]。這樣就限制了上電瞬間充電電流的大小,避免了大電流對電網的沖擊。北京新能源汽車電壓傳感器廠家供應