無錫納吉伏公司基于自激振蕩磁通門技術并結合傳統電流比較儀結構設計了新型交直流電流傳感器,介紹了其系統組成及工作原理。通過分析新型交直流傳感器的誤差來源,對傳統自激振蕩磁通門傳感器進行改進,提出了本文方案中基于雙鐵芯結構自激振蕩磁通門傳感器的交直流檢測器,同時也對解調電路進行了相關優化改進。并結合自動控制理論建立了新型交直流電流傳感器的交直流穩態誤差模型,明確了影響新型交直流傳感器穩態測量誤差的各項因素,為設計新型交直流傳感器提供理論依據及參考方向。依據上述理論研究,設計了高線性度與靈敏度的交直流電流檢測器,依據誤差抑制方法及優化設計原則對其信號處理電路、電流反饋電路、終端測量電阻和電磁屏蔽進行相應設計。然后結合零磁通交直流檢測器的優化設計,完成了高精度交直流電流傳感器樣機研制。基于全相位傅里葉變換的軟件解調方法解決數據截斷引起的頻譜泄漏問題。杭州測量級電流傳感器廠家
對于交、直流電流信號檢測,除了磁調制方法,還有基于歐姆定律的分流器法、基于電磁感應原理的羅氏線圈法、基于霍爾效應原理的霍爾電流傳感器法以及基于磁光效應的光電電流傳感器法等。這些測量方法理論上均可用于交直流電流的測量,但具有不同的特點。除了羅氏線圈電流傳感器無法進行交直流同時測量,其他四種方法皆可測量交直流電流,但各有優缺點,因此各自的適用場合不同。光學電流傳感器電流檢測部分為無源結構,因此具有高可靠性特點,在電磁環境惡劣、測量安全性及可靠性要求較高場合使用,但受限于成本因素,在電網電流測量中在小部分場合使用。西安電池電流傳感器價格交流比較儀和直流比較儀均不適宜直接用于交直流電流測量.。
霍爾效應是指當一個載流子(如電子或空穴)通過一段具有電流的導電材料時,如果該導電材料處于一個垂直于電流方向的磁場中,會在該材料上產生一種電壓差。這個電壓差被稱為霍爾電壓,其大小與電流、磁場以及導電材料的特性有關。 基于霍爾效應的原理,可以制造霍爾元件,如霍爾傳感器,用來測量磁場強度、電流等物理量。典型的霍爾傳感器包括霍爾元件、放大器和輸出接口等組件。當霍爾元件處于磁場中,載流子在材料內運動,受磁場力的作用,產生一側電勢高于另一側的現象,形成霍爾電壓。通過霍爾傳感器的放大器,可以將微弱的霍爾電壓放大成可測量的電壓信號。輸出接口可以將信號傳遞給測量儀器或控制系統進行進一步處理。 霍爾原理的優勢在于其非接觸式測量和高靈敏度。由于霍爾傳感器內部實際上沒有電流通過,因此不存在耗損和磨損的問題,具有較長的使用壽命和穩定性。此外,霍爾傳感器對于小信號的測量也具有較高的靈敏度。 基于霍爾原理的應用包括磁場測量、電流檢測、位置和速度測量等,在自動化、汽車、電子設備等領域都得到廣泛應用。
直流分量直接影響電網中電力設備如電流互感器、變壓器等正常運行,國內外集中研究了直流分量產生的原因及其對電流互感器計量性能的影響,直流分量下交流測量新方法等。國外對于電網中直流分量對電力設備影響相關的研究較早,早期是美國教授J.G.Kappman等重點研究了中性點直接接地系統中地磁感應電流。研究發現在地磁暴感應準直流影響下,電磁式電流互感器二次側電流畸變,誤差明顯增大;當變比較大或負荷電流較小時,互感器受直流分量影響較小。結合電子補償式交流比較儀及自平衡式直流比較儀的結構建立閉環交直流電流傳感器。
偶次諧波法進行了分析,該方法簡單、有效,但是檢測電路復雜,精度較低,溫漂較大。因此為改善磁通門技術的現狀,吉林大學程福德團隊提出了時間差型磁通門,該方法有可能解決現有磁通門分辨力、測量精度難以繼續提高的問題,是磁通門研究中一個值得重視的方向; g Velasco-Quesada等提出了零磁通反饋式磁通門,使磁芯工作在零磁通狀態下,有效減小磁滯對測量的影響; Takahiro Kudo等給出了一種通過測量輸出信號峰值位置變化的方法得到被測電流的在電動汽車中,電流測量可以幫助駕駛員了解電池的充電狀態和放電效率,以確保車輛的安全和高效運行;蕪湖粒子加速器電流傳感器服務電話
由于電流的變化速度很快,對電流傳感器的帶寬要求很高。杭州測量級電流傳感器廠家
實際電源系統中有些電流的形式比較復雜,由于電源系統中的負載特性的變化,可能會引起電流的波形的變化。復雜電流波形可以看成多個不同頻率的電流疊加而成的。常見的復雜電流有交流電流疊加一個脈動的直流電流、直流電流疊加脈沖電流和電源中的負載電流等。復雜的電流波形可以經過傅里葉分解,對各個頻率的分量進行的分別測量。進行疊加的各個分量具有不同的頻率,電流形式上為復雜波形,也就是說電流具有較寬的頻帶。為了精確測量具有寬頻帶的電流,就需要設計寬頻帶的電流傳感器。杭州測量級電流傳感器廠家