散熱鰭片的設(shè)計(jì)創(chuàng)新也是關(guān)鍵。采用了三維立體結(jié)構(gòu)的散熱鰭片,相比傳統(tǒng)的平面鰭片,增加了散熱面積。同時(shí),這些三維鰭片的表面還采用了微納結(jié)構(gòu)處理,增強(qiáng)了空氣與鰭片之間的熱交換效率。通過優(yōu)化鰭片的間距和排列方式,進(jìn)一步改善了空氣的流動(dòng)特性,使空氣能夠更順暢地帶走熱量。在一些大型柔直輸電換流站中,這種創(chuàng)新設(shè)計(jì)的熱管散熱器能夠更高效地應(yīng)對(duì)高功率密度下的散熱需求,降低了功率器件的結(jié)溫,提高了整個(gè)柔直輸電系統(tǒng)的運(yùn)行效率和可靠性。此外,在熱管散熱器與柔直輸電設(shè)備的連接方式上也有改進(jìn)。使用了具有高導(dǎo)熱性和良好柔韌性的熱界面材料,能夠更好地填充熱管與功率器件之間的微小間隙,減少接觸熱阻。這種緊密的連接方式確保了熱量能夠快速?gòu)墓β势骷鲗?dǎo)至熱管,提高了整個(gè)散熱系統(tǒng)的效率,為柔直輸電系統(tǒng)的高性能運(yùn)行提供了有力支持。熱管散熱器散熱均勻,有效延長(zhǎng)設(shè)備使用壽命。浙江風(fēng)力發(fā)電熱管散熱器選購(gòu)
IGBT 器件的工作特性決定了其在電能轉(zhuǎn)換過程中必然會(huì)產(chǎn)生大量熱量。以新能源汽車的電機(jī)控制器為例,在滿負(fù)荷運(yùn)轉(zhuǎn)時(shí),單個(gè) IGBT 模塊的功率損耗可達(dá)數(shù)千瓦,若無法及時(shí)散熱,其結(jié)溫將在短時(shí)間內(nèi)突破安全閾值。傳統(tǒng)散熱方式如鋁制散熱片加風(fēng)冷,在應(yīng)對(duì)低功率密度設(shè)備時(shí)尚能滿足需求,但在功率密度超過 500W/cm2 的高功率 IGBT 模塊面前,散熱效率急劇下降。實(shí)測(cè)數(shù)據(jù)顯示,采用傳統(tǒng)散熱方案的 IGBT 模塊,在連續(xù)工作 2 小時(shí)后,結(jié)溫會(huì)從初始的 25℃攀升至 120℃以上,遠(yuǎn)超其 150℃的極限結(jié)溫的安全工作溫度范圍,導(dǎo)致器件性能衰退,甚至引發(fā)災(zāi)難性故障。湖南軌道牽引熱管散熱器廠家純水冷卻系統(tǒng),設(shè)備運(yùn)行的有力保障。
隨著電力電子技術(shù)的發(fā)展,熱管散熱器在設(shè)計(jì)上不斷創(chuàng)新以滿足更高的散熱要求。在熱管結(jié)構(gòu)方面,新型的微通道熱管被廣泛應(yīng)用于電力電子熱管散熱器。微通道熱管內(nèi)部有微小通道,增加了工作介質(zhì)與管壁的接觸面積,強(qiáng)化了熱交換過程。在高功率密度的電力電子設(shè)備中,如新一代數(shù)據(jù)中心的服務(wù)器電源,微通道熱管散熱器能在有限空間內(nèi)實(shí)現(xiàn)更高效散熱。同時(shí),在散熱鰭片設(shè)計(jì)上也有創(chuàng)新,仿生學(xué)的樹形鰭片結(jié)構(gòu)逐漸受到關(guān)注。這種結(jié)構(gòu)模擬樹木分支形態(tài),能在不增加太多體積的情況下,大幅增加與空氣的接觸面積,提高空氣對(duì)流散熱效率。此外,一些熱管散熱器采用了復(fù)合熱管結(jié)構(gòu),將不同類型的熱管或具有不同功能的部分結(jié)合。例如,將吸液芯結(jié)構(gòu)和重力輔助熱管結(jié)合,使散熱器在不同的工作姿態(tài)下都能保證良好的散熱效果。而且,在制造工藝上,3D打印技術(shù)開始用于制造熱管散熱器的部分結(jié)構(gòu),實(shí)現(xiàn)更復(fù)雜的內(nèi)部結(jié)構(gòu)和更精確的尺寸控制,提高熱管與發(fā)熱元件的貼合度和散熱通道的優(yōu)化程度。
熱管應(yīng)用于 IGBT 散熱時(shí),具有諸多優(yōu)勢(shì)。首先,熱管能夠?qū)崿F(xiàn)遠(yuǎn)距離、高速度的熱量傳輸,可有效解決 IGBT 器件與散熱裝置之間空間布局受限的問題。其次,熱管的等溫性好,能使熱源表面溫度分布更加均勻,避免因局部過熱對(duì) IGBT 器件造成損害。此外,熱管是一種被動(dòng)式散熱元件,無需額外的動(dòng)力裝置,具有結(jié)構(gòu)簡(jiǎn)單、可靠性高、維護(hù)成本低等特點(diǎn),適用于對(duì)穩(wěn)定性要求極高的電力電子設(shè)備。設(shè)計(jì) IGBT 熱管散熱器時(shí),需要綜合考慮多個(gè)因素,以實(shí)現(xiàn)比較好的散熱效果。熱管的選型是關(guān)鍵環(huán)節(jié)之一,需要根據(jù) IGBT 器件的功率、發(fā)熱量、工作環(huán)境等參數(shù),合理選擇熱管的管徑、長(zhǎng)度、材質(zhì)以及工作液體。一般來說,管徑越大、長(zhǎng)度越短的熱管,其傳熱能力越強(qiáng);而不同的工作液體適用于不同的溫度范圍,如純凈水適用于常溫環(huán)境,氨則適用于低溫環(huán)境。高效熱管散熱器,確保電子設(shè)備性能穩(wěn)定。
在許多熱管散熱器中,風(fēng)扇的作用是加速空氣流動(dòng),進(jìn)一步提高散熱效率。風(fēng)扇的風(fēng)量、風(fēng)壓和轉(zhuǎn)速是衡量其性能的重要指標(biāo)。高風(fēng)量的風(fēng)扇能夠快速帶走鰭片上的熱量,但同時(shí)也會(huì)產(chǎn)生較大的噪音;而高風(fēng)壓的風(fēng)扇則更適合在鰭片間距較小、空氣流通阻力較大的情況下使用。現(xiàn)代熱管散熱器通常會(huì)配備智能溫控風(fēng)扇,能夠根據(jù)溫度變化自動(dòng)調(diào)節(jié)轉(zhuǎn)速,在保證散熱效果的同時(shí),降低噪音和能耗。傳統(tǒng)熱管在面對(duì)極端工況或特殊散熱需求時(shí),可能會(huì)出現(xiàn)傳熱效率下降的問題。復(fù)合式熱管技術(shù)通過整合多種傳熱機(jī)制,有效解決了這一難題。例如,將微通道技術(shù)與熱管相結(jié)合,在熱管內(nèi)部構(gòu)建微通道結(jié)構(gòu),進(jìn)一步增大了工作液體與管壁的接觸面積,提升了相變傳熱效率。同時(shí),部分復(fù)合式熱管還引入了電磁驅(qū)動(dòng)技術(shù),通過施加電磁場(chǎng),增強(qiáng)工作液體的流動(dòng)動(dòng)力,即使在重力作用微弱或無重力的環(huán)境下,也能確保液態(tài)工作介質(zhì)順利回流,極大地拓展了熱管散熱器的應(yīng)用場(chǎng)景。智能調(diào)控,純水冷卻系統(tǒng)滿足各種需求。江蘇高等溫性熱管散熱器供應(yīng)商
環(huán)保設(shè)計(jì),純水冷卻系統(tǒng)減少排放。浙江風(fēng)力發(fā)電熱管散熱器選購(gòu)
脈動(dòng)式熱管散熱器是一種新型熱管,其內(nèi)部沒有吸液芯結(jié)構(gòu),而是由一系列彎曲的細(xì)小通道組成。工作時(shí),液態(tài)介質(zhì)在通道內(nèi)形成氣液兩相的脈動(dòng)流動(dòng),實(shí)現(xiàn)熱量的傳遞。脈動(dòng)式熱管散熱器具有結(jié)構(gòu)緊湊、傳熱效率高、啟動(dòng)速度快等優(yōu)點(diǎn),適用于空間有限且對(duì)散熱要求較高的場(chǎng)合,如小型電子設(shè)備、LED 照明燈具等。不過,脈動(dòng)式熱管散熱器的工作原理相對(duì)復(fù)雜,其性能受工作液體的物性、通道尺寸和形狀等因素影響較大,目前在大規(guī)模應(yīng)用上還存在一定的限制。浙江風(fēng)力發(fā)電熱管散熱器選購(gòu)