離子滲氮的幾個問題:溫度測量。普通熱處理設備利用電熱體發熱加熱工件,爐內溫度均勻,測溫熱電偶的溫度可反映工件溫度。離子滲氮靠工件自身輝光放電加熱,而且工件帶陰極電位,熱電偶不能與工件直接接觸,所以測溫熱電偶的溫度與工件溫度不一致。爐內工件越少,熱電偶距離工件越遠,熱電偶溫度與工件溫度相差越大。實際操作時,經常采取目測溫度等方法,彌補測溫不準的問題。溫度均勻性。離子滲氮靠自身輝光放電加熱,同一爐不同工件,質量不同,表面積不同,受熱也不同,所以工件溫度可能不均勻。實際工藝操作時,同爐工件相差不要太大。要考慮工件的裝爐方式,質量大,表面積小的工件受熱條件差,溫度偏低,裝爐時,放在陰極盤的內圈或下部,必要時,加輔助陰極。帶有小孔、窄縫工件的處理。帶有小孔、窄縫的工件,易產生空心陰極效應,導致局部電流過大,溫升過高而產生弧光放電,工藝不能進行。建議將小孔、窄縫屏蔽,如不易屏蔽,則須調整氣壓,來調整陰極放電長度,避免產生空心陰極效應。在相同的氨流量和氨壓下,進行離子氮化與氣體氮化的對比實驗,證明離子氮化比氣體氮化的效果好。清遠金屬表面離子氮化工藝
離子氮化與氣體氮化在多個方面存在差異。從氮化原理看,氣體氮化是通過氨氣在高溫下分解出氮原子,然后氮原子在工件表面吸附并擴散形成氮化層;而離子氮化是利用輝光放電產生的氮離子轟擊工件表面實現氮化。在氮化速度上,離子氮化明顯更快,如前所述,可縮短大量時間。在氮化質量方面,離子氮化能更精確控制氮化層組織和性能,氣體氮化的氮化層質量均勻性相對較差。從設備成本來看,離子氮化設備由于包含真空系統、電源系統等,初期投資較高;氣體氮化設備相對簡單,成本較低。但從長期運行成本考慮,離子氮化因氮化速度快、能耗低,綜合成本可能更具優勢。在應用范圍上,氣體氮化適用于各種形狀和尺寸的工件,對復雜工件的處理能力較強;離子氮化對于形狀簡單、表面積較大的工件效果更佳,不過隨著技術發展,對復雜工件的處理能力也在不斷提升。汕頭不銹鋼離子氮化種類離子氮化件常見缺陷與對策。
離子氮化設備一般由電氣控制系統、真空爐體、滲劑氣體配氣系統、真空產生和維持系統、真空測量及控制系統等幾大部分組成。離子滲氮設備中重要的是電氣控制系統,根據控制系統電源種類的不同可分為直流電源(LD系列)和脈沖電源(LDMC系列)兩大類。大功率脈沖電源自上個世紀九十年代我所獨自研發成功以來,經過十多年的發展,發展到了第二代脈沖電源(PN-II),現已取代了直流電源,成為離子滲氮設備的優先電源。如果有離子氮化的需要,歡迎聯系。
離子氮化處理注意事項之降溫,保溫到預定時間后,開始向爐體內大量給冷卻水,當爐體完全冷卻后,即關閉蝶閥,停真空泵,停高壓,并向爐內大量供氨,待爐內充滿氨氣,即將氨氣供給降為微量,保持正壓。待爐內溫度降到180℃以下時,停氨氣,停冷卻水,重新啟動真空泵。抽至完全真空后,停真空泵,打開通氣閥,待爐內恢復常壓后吊開爐蓋交檢工件。另外,由于離子氮化的過程是起輝電離放電的過程,所以一定要遵循基本的放電原理。當陰極放電長度小于小孔或窄縫尺寸的一半時,離子氮化才能夠正常進行。而陰極放電長度主要受氣壓、氣體組分、電壓等參數的影響,.小也就能控制到1mm左右,所以理論上通過起輝進行氮化的小孔和窄縫的.小尺寸是2mm。離子氮化處理加工工藝。
離子氮化能提升金屬表面硬度,為金屬材料提供出色的耐磨性。以模具鋼為例,經離子氮化處理后,表面硬度可從原本的 HV200 - 300 提升至 HV1000 - 1200 甚至更高。這是由于在離子氮化過程中,氮原子與金屬原子結合形成了硬度極高的氮化物,如 Fe?N、Fe?N 等。這些氮化物彌散分布在金屬表面,形成了一層堅硬的防護層,極大地增強了金屬表面抵抗摩擦和磨損的能力。在機械制造中,齒輪、軸類等零件經離子氮化后,表面硬度的提升使其能夠承受更大的載荷,降低磨損,延長使用壽命,提高機械裝備的可靠性和穩定性。離子滲氮又稱輝光滲氮,是利用輝光放電原理進行的。陽江結構鋼離子氮化缺點
離子氮化爐陰極結構的研試。清遠金屬表面離子氮化工藝
離子氮化技術的起源可回溯到 20 世紀 30 年代,當時德國科學家伯恩施坦初次提出了離子氮化的概念。但受限于當時的技術條件,早期發展緩慢。直到 50 年代末至 60 年代初,隨著真空技術和電源技術的進步,離子氮化設備逐漸完善,該技術才開始進入實際應用階段。在隨后的幾十年里,離子氮化技術不斷改進和創新。從初簡單的直流離子氮化,發展到脈沖離子氮化,有效解決了傳統直流離子氮化中存在的空心陰極效應等問題,提高了氮化質量和效率。同時,設備的自動化程度不斷提高,工藝控制更加精確,應用領域也從初的機械制造行業,逐步拓展到航空航天、汽車、模具等眾多領域,成為一種廣泛應用且不斷發展的表面處理技術。清遠金屬表面離子氮化工藝