輔助駕駛,在目前的L2/L3級高級輔助駕駛中,激光雷達可覆蓋前向視場(水平視場角覆蓋60°到120°)以實現自動跟車或者高速自適應巡航等功能。通過發射信號和反射信號的對比,構建出點云圖,從而實現諸如目標距離、方位、速度、姿態、形狀等信息的探測和識別。除了傳統的障礙物檢測以外,激光雷達還可以應用于車道線檢測。優點在于測距遠、精度高,獲取信息豐富,抗源干擾能力強。自動駕駛,未來,L4/L5級無人駕駛應用的實現,有賴于激光雷達提供的感知信息。激光雷達是一種可以掃描周圍環境并生成三維圖像的傳感器。它可以被用于識別障礙物、構建地圖和定位車輛等應用場景。該級別應用需要面對復雜多變的行駛環境,對激光雷達性能水平要求較高,在要求360°水平掃描范圍的同時,對于低反射率物體的較遠測距能力需要達到200m,且需要更高的線數以及更密的點云分辨率;同時為了減少噪點還需要激光雷達具有抵抗同環境中其他激光雷達干擾的能力。激光雷達助無人駕駛感知路況,讓出行安全高效。車載激光雷達市場價格
回波模式,即周期采集點數,因為激光雷達在旋轉掃描,因此水平方向上掃描的點數和激光雷達的掃描頻率有一定的關系,掃描越快則點數會相對較少,掃描慢則點數相對較多。一般這個參數也被稱為水平分辨率,比如激光雷達的水平分辨率為 0.2°,那么掃描的點數為 360°/0.2°=1800,也就是說水平方向會掃描1800次。次。同一輪發光測距的不同回波數據,比如同時包含較強回波和較晚回波。有效檢測距離,激光雷達是一個收發異軸的光學系統(其實所有的機械雷達都是),也就是說,發射出去的激光光路,和返回的激光光路,并不重合。江蘇工業激光雷達廠商激光雷達在安防領域實現了對入侵者的快速識別和追蹤。
這里就來分享一下激光雷達在實際應用中的那些小細節~工作原理:激光雷達是基于時間飛行(TOF)工作原理;激光雷達發射激光脈沖,并測量此脈沖經被測目標表面反射后返回的時間,然后換算成距離數據發射光和接受光時間差為t,c為光速,則雷達與目標的距離為雷達通過一個反射鏡對測距激光脈沖進行反射。當反射鏡被電機帶動旋轉時,從而形成一個與旋轉軸垂直的掃描平面。雷達定時發出脈沖光,同時電機帶動發射鏡旋轉,這樣就可以構成二維點云數據。
優劣勢分析,優勢:首先,該設計減少了激光發射和接收的線數以實現一幀之內更高的線數,也隨之降低了對焦與標定的復雜度,因此生產效率得以大幅提升,并且相比于傳統機械式激光雷達,棱鏡式的成本有了大幅的下降。其次,只要掃描時間夠久,就能得到精度極高的點云以及環境建模,分辨率幾乎沒有上限,且可達到近100%的視場覆蓋率。劣勢:棱鏡式激光雷達FOV相對較小,且視場中心的掃描點非常密集,雷達的視場邊緣掃描點比較稀疏,在雷達啟動的短時間內會有分辨率過低的問題。對于高速移動的汽車來說,顯然不存在長時間掃描的情況,不過可以通過增加激光線束和功率實現更高的精度和更遠的探測距離,但機械結構也相對更加復雜,體積讓前兩者更難以控制,存在軸承或襯套的磨損等風險。管道檢測使用激光雷達探查內部,預防泄漏等事故。
激光雷達難點:當周邊環境中存在透明介質 (如潔凈水體) 時,位于透明介質內部或后方的目標能夠被測到。由于光線在透明介質中會發生折射,被測目標實際上位于折射光路上,而測量結果則位于直線光路上,測量出的目標位置會發生偏差,此外,雷達也可能會收到兩個反射回波,一個來自于透明介質內部或后方的實際目標表面的反射,另一個來自于不完全潔凈的透明介質表面的漫反射,此時的測量結果不確定,有可能是介質表面,也可能是實際目標。激光雷達用于林業監測樹木參數,為森林資源評估提供助力。上海連續波激光雷達市價
在智能物流中引導 AGV 小車,提升貨物搬運倉儲效率。車載激光雷達市場價格
激光雷達是自動駕駛領域非常依賴的傳感器,越來越多的自動駕駛公司看好激光雷達的應用前景。激光雷達具有較高的分辨率,可以記錄周圍環境的三維信息,激光雷達是主動發射型設備,對光照的變化不敏感,在有光照變化和夜晚等場景基本不會受到影響。此外激光雷達能夠提供水平360度的視野范圍,保證整個自動駕駛車基本上沒有視野盲區。但是激光雷達懼怕霧霾天氣,因為霧霾顆粒的大小非常接近激光的波長,激光照射到霧霾顆粒上會產生干擾,導致效果下降。隨著技術的進步,以及成本的下降,激光雷達會普及到更多領域。車載激光雷達市場價格