MEMS特點:
1.微型化:MEMS器件體積小、重量輕、耗能低、慣性小、諧振頻率高、響應時間短。
2.以硅為主要材料,機械電器性能優良:硅的強度、硬度和楊氏模量與鐵相當,密度類似鋁,熱傳導率接近鉬和鎢。
3.批量生產:用硅微加工工藝在一片硅片上可同時制造成百上千個微型機電裝置或完整的MEMS。批量生產可降低生產成本。
4.集成化:可以把不同功能、不同敏感方向或致動方向的多個傳感器或執行器集成于一體,或形成微傳感器陣列、微執行器陣列,甚至把多種功能的器件集成在一起,形成復雜的微系統。微傳感器、微執行器和微電子器件的集成可制造出可靠性、穩定性很高的MEMS。
5.多學科交叉:MEMS涉及電子、機械、材料、制造、信息與自動控制、物理、化學和生物等多種學科,并集約了當今科學技術發展的許多成果。 MEMS的繼電器與開關是什么?陜西MEMS微納米加工材料區別
熱壓印技術在硬質塑料微流控芯片中的應用:熱壓印技術是實現PMMA、PS、COC、COP等硬質塑料微結構快速成型的**工藝,較傳統注塑工藝具有成本低、周期短、圖紙變更靈活等優勢。工藝流程包括:首先利用光刻膠在硅片上制備高精度模具,微結構高度5-100μm,側壁垂直度>89°;然后將塑料基板加熱至玻璃化轉變溫度以上(如PMMA為110℃),在5-10MPa壓力下將模具結構轉印至基板,冷卻后脫模。該技術可實現0.5μm的特征尺寸分辨率,流道尺寸誤差<±1%,適用于微流道、微孔陣列、透鏡陣列等結構加工。以數字PCR芯片為例,熱壓印制備的50μm直徑微腔陣列,單芯片可容納20,000個反應單元,配合熒光檢測實現核酸分子的***定量,檢測靈敏度達0.1%突變頻率。公司開發的快速換模系統可在30分鐘內完成模具更換,支持小批量生產(100-10,000片),從設計圖紙到樣品交付**短*需10個工作日,較注塑縮短70%周期。此外,通過表面涂層處理(如疏水化、親水化),可定制芯片表面潤濕性,滿足不同檢測場景的流體控制需求,成為研發階段快速迭代與中小批量生產的優先工藝。浙江MEMS微納米加工誠信合作熱壓印技術支持 PMMA/COC 等材料微結構快速成型,較注塑工藝縮短工期并降低成本。
MEMS制作工藝-太赫茲超導混頻陣列的MEMS體硅集成天線與封裝技術:
太赫茲波是天文探測領域的重要波段,太赫茲波探測對提升人類認知宇宙的能力有重要意義。太赫茲超導混頻接收機是具有代表性的高靈敏天文探測設備。天線及混頻芯片封裝是太赫茲接收前端系統的關鍵組件。當前,太赫茲超導接收機多采用單獨的金屬喇叭天線和金屬封裝,很難進行高集成度陣列擴展。大規模太赫茲陣列接收機發展很大程度受到天線及芯片封裝技術的制約。課題擬研究基于MEMS體硅工藝技術的適合大規模太赫茲超導接收陣列應用的0.4THz以上頻段高性能集成波紋喇叭天線,及該天線與超導混頻芯片一體化封裝。通過電磁場理論分析、電磁場數值建模與仿真、低溫超導實驗驗證等手段,
MEMS制作工藝-太赫茲超材料器件應用前景:
在通信系統、雷達屏蔽、空間勘測等領域都有著重要的應用前景,近年來受到學術界的關注。基于微米納米技術設計的周期微納超材料能夠在太赫茲波段表現出優異的敏感特性,特別是可與石墨烯二維材料集成設計,獲得更優的頻譜調制特性。因此、將太赫茲超材料和石墨烯二維材料集成,通過理論研究、軟件仿真、流片測試實現了石墨烯太赫茲調制器的制備。能夠在低頻帶濾波和高頻帶超寬帶濾波的太赫茲濾波器,通過測試驗證了理論和仿真的正確性,將超材料與石墨烯集成制備的太赫茲調制器可對太赫茲波進行調制。 MEMS被認為是21世紀很有前途的技術之一。
MEMS制作工藝-太赫茲傳感器:
超材料(Metamaterial)是一種由周期性亞波長金屬諧振的單元陣列組成的人工復合型電磁材料,通過合理的設計單元結構可實現特殊的電磁特性,主要包括隱身、完美吸和負折射等特性。目前,隨著太赫茲技術的快速發展,太赫茲超材料器件已成為當前科研的研究熱點,在濾波器、吸收器、偏振器、太赫茲成像、光譜和生物傳感器等領域有著廣闊的應用前景。
這項研究提出了一種全光學、端到端的衍射傳感器,用于快速探測隱藏結構。這種衍射太赫茲傳感器具有獨特的架構,由一對編碼器和解碼器構成的衍射網絡組成,每個網絡都承擔著結構化照明和空間光譜編碼的獨特職責,這種設計較為新穎。基于這種獨特的架構,研究人員展示了概念驗證的隱藏缺陷探測傳感器。實驗結果和分析成功證實了該單像素衍射太赫茲傳感器的可行性,該傳感器使用脈沖照明來識別測試樣品內各種未知形狀和位置的隱藏缺陷,具有誤報率極低、無需圖像形成和采集以及數字處理步驟等特點。 PDMS 金屬流道加工技術可在柔性流道內沉積金屬鍍層,實現電化學檢測與流體控制一體化。多功能MEMS微納米加工的生物傳感器
MEMS的深硅刻蝕是什么?陜西MEMS微納米加工材料區別
熱敏柔性電極的PI三明治結構加工技術:熱敏柔性電極采用PI(聚酰亞胺)三明治結構,底層PI作為柔性基板,中間層為金屬電極,上層PI實現絕緣保護,開窗漏出Pad引線位置,兼具柔韌性與電學性能。加工過程中,首先在25μm厚度的PI基板上通過濺射沉積5μm厚度的銅/金電極層,利用光刻膠作為掩膜進行濕法刻蝕,形成10-50μm寬度的電極圖案,線條邊緣粗糙度<1μm;然后涂覆10μm厚度的PI絕緣層,通過激光切割開設引線窗口,窗口定位精度±5μm;***經300℃高溫亞胺化處理,提升層間結合力(剝離強度>10N/cm)。該電極的彎曲半徑可達5mm,耐彎折次數>10萬次,表面電阻<5Ω/□,適用于可穿戴體溫監測、心率傳感器等設備。在醫療領域,用于術后傷口熱敷的柔性加熱電極,可通過調節輸入電壓實現37-42℃精細控溫,溫度均勻性誤差<±0.5℃,避免局部過熱損傷組織。公司支持電極圖案的個性化設計,可集成熱電偶、NTC熱敏電阻等傳感器,實現“感知-驅動”一體化,推動柔性電子技術在醫療健康與智能設備中的廣泛應用。陜西MEMS微納米加工材料區別