運(yùn)動項(xiàng)目需要特定的力量和爆發(fā)力特征,為實(shí)現(xiàn)對運(yùn)動員進(jìn)行訓(xùn)練監(jiān)測,葡萄牙田徑聯(lián)合會與葡萄牙萊里亞理工學(xué)院合作,由PauloMiranda-Oliveira團(tuán)隊(duì)設(shè)計(jì)了一種使用IMU評估蹲跳(CMJs)的方法,用以分析運(yùn)動員在蓄力階段的表現(xiàn)、跳躍高度和修正反應(yīng)強(qiáng)度指數(shù)(RSImod)。該團(tuán)隊(duì)開發(fā)的設(shè)備,包含了一個(gè)9軸IMU-----加速度計(jì)(±16g)、陀螺儀(±2000dps)和磁力計(jì)(±4900μT),數(shù)據(jù)采樣率為300Hz。IMU與筆記本電腦之間通過Wifi進(jìn)行連接。同時(shí),實(shí)驗(yàn)測試在測力板(ForcePlate,F(xiàn)P)上進(jìn)行,并使用測力板采集到的數(shù)據(jù)作為比較基線。共有8名高水平運(yùn)動員(6名男性2名女性)參與了測試,這些運(yùn)動員在測試前6個(gè)月均沒有傷病記錄。研究團(tuán)隊(duì)將IMU固定放置在運(yùn)動員的第五腰椎(L5)上。每名運(yùn)動員每組進(jìn)行3-5次CMJ跳躍,每次跳躍之間間隔1分鐘,共進(jìn)行30次CMJ跳躍。IMU 和 測力板FP統(tǒng)計(jì)結(jié)果顯示,兩者在正脈沖相位時(shí)間、負(fù)脈沖相位時(shí)間、滯空時(shí)間等方面,有著相似的結(jié)果;同時(shí)在跳躍高度、比較大力量、RSImod等方面兩者也有著近似的測試結(jié)果。同時(shí)設(shè)備簡單易用,可以幫助教練員和運(yùn)動員進(jìn)行訓(xùn)練監(jiān)測和控制,提高訓(xùn)練系統(tǒng)性,同時(shí)提高訓(xùn)練水平。導(dǎo)航傳感器的價(jià)格范圍是多少?進(jìn)口慣性傳感器測量精度
在自動駕駛系統(tǒng)中,慣性測量單元(IMU)扮演著"黑暗中的眼睛"這一關(guān)鍵角色。當(dāng)車輛駛?cè)胄l(wèi)星信號盲區(qū)(如隧道、地下車庫或多層高架橋)時(shí),全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)的定位精度會驟降至米級甚至完全失效。此時(shí),IMU通過實(shí)時(shí)測量三軸加速度和角速度,結(jié)合卡爾曼濾波算法進(jìn)行航位推算(DeadReckoning),可在5秒內(nèi)將定位誤差控制在0.1%行駛距離以內(nèi)。特斯拉的FSD系統(tǒng)采用雙頻IMU冗余設(shè)計(jì),每秒采樣2000次加速度數(shù)據(jù),即使在緊急避障的8G瞬時(shí)加速度下仍能保持穩(wěn)定輸出。更精妙的是,IMU與高精地圖、激光雷達(dá)的多傳感器融合正在改寫定位范式。Waymo的第五代系統(tǒng)將IMU數(shù)據(jù)與攝像頭視覺里程計(jì)(VIO)同步,通過擴(kuò)展卡爾曼濾波器(EKF)消除陀螺儀零偏誤差,使得在衛(wèi)星信號中斷60秒后,車輛仍能保持厘米級定位精度。2023年加州大學(xué)伯克利分校的測試數(shù)據(jù)顯示,搭載戰(zhàn)術(shù)級MEMS-IMU的自動駕駛卡車,在30公里連續(xù)隧道中的橫向偏移量為12厘米,較傳統(tǒng)方案提升83%。傳感器校準(zhǔn)如何選擇適合機(jī)器人應(yīng)用的IMU?
SLAM是移動機(jī)器人探索未知區(qū)域所依賴的一項(xiàng)重要技術(shù),當(dāng)前主流的SLAM方法主要有兩種類型:視覺和激光。通過視覺特征的定位技術(shù)受光照和攝像機(jī)移動速度的影響很大,移動機(jī)器人在快速移動或在照明條件較差的場景中(比如煤礦隧道)往往會導(dǎo)致視覺特征跟蹤的丟失。特別是在煤礦隧道環(huán)境中,地面往往是不平整的,導(dǎo)致機(jī)器人的移動非常顛簸,加上照明不均勻等條件,這就導(dǎo)致移動機(jī)器人在煤礦隧道環(huán)境下,難以實(shí)現(xiàn)精確的自主定位和地圖構(gòu)建。為解決類似于煤礦井下隧道環(huán)境下的定位和建圖問題,西安科技大學(xué)Daixian Zhu團(tuán)隊(duì)改進(jìn)了一種基于單目相機(jī)和IMU的定位和建圖算法。他們設(shè)計(jì)了一種結(jié)合了點(diǎn)和線特征的特征匹配方法,以提高算法在惡劣場景及照明不足場景下的可靠性;緊耦合方法用于建立視覺特征約束和IMU預(yù)積分約束;采用基于滑動窗口的關(guān)鍵幀非線性優(yōu)化算法完成狀態(tài)估計(jì)。
近期,來自日本的研究者開發(fā)出一個(gè)名為MMW-AQA的創(chuàng)新性數(shù)據(jù)集,該數(shù)據(jù)集融合了多種傳感器信息,專門設(shè)計(jì)用于用于客觀評價(jià)人類在復(fù)雜環(huán)境下的動作質(zhì)量,這一突破為運(yùn)動分析和智能安全系統(tǒng)的優(yōu)化提供了新的可能。MMW-AQA數(shù)據(jù)集結(jié)合了毫米波雷達(dá)、攝像頭和IMU(慣性測量單元)等不同類型的傳感器,以視角捕獲人體運(yùn)動細(xì)節(jié)。通過在真實(shí)環(huán)境中收集大量運(yùn)動員、工人和其他人員的動作樣本,研究者能夠分析動作執(zhí)行的精確度、效率和潛在的傷害風(fēng)險(xiǎn)。尤其在體育訓(xùn)練和工業(yè)安全領(lǐng)域,這種多模態(tài)觀測方法能夠提供更的動作分析,幫助教練和安全識別和糾正不良姿勢或不規(guī)范操作,從而提升表現(xiàn)和減少傷害。IMU傳感器的工作溫度范圍是多少?
近日,波音公司(Boeing)宣布成功完成了一次具有里程碑意義的飛行測試,***在實(shí)際飛行中使用QuantumIMU進(jìn)行導(dǎo)航,無需依賴GPS信號。此次測試不僅展示了QuantumIMU在導(dǎo)航領(lǐng)域的巨大潛力,也為未來航空技術(shù)的發(fā)展開啟了新的篇章。波音公司在密蘇里州圣路易斯蘭伯特國際機(jī)場進(jìn)行的四小時(shí)飛行測試中,使用了由波音與AOSense聯(lián)合開發(fā)的六軸Quantum IMU。這款I(lǐng)MU采用了原子干涉技術(shù),能夠在無需GPS信號的情況下精確檢測旋轉(zhuǎn)和加速度,實(shí)現(xiàn)了前所未有的導(dǎo)航精度。這意味著它可以在各種復(fù)雜的環(huán)境中提供極其準(zhǔn)確的位置信息,從而***提升飛行的安全性和可靠性。波音公司首席高級技術(shù)研究員Ken Li表示:“波音公司非常自豪能夠領(lǐng)導(dǎo)量子技術(shù)的發(fā)展,通過在所有條件下實(shí)現(xiàn)精確導(dǎo)航來提高飛行的安全性。工業(yè)自動化中慣性傳感器的應(yīng)用場景有哪些?江蘇原裝IMU傳感器評測
IMU傳感器是否需要校準(zhǔn)?進(jìn)口慣性傳感器測量精度
我國為保證隧道安全運(yùn)營,需要投入大量人力物力對隧道進(jìn)行變形監(jiān)測、運(yùn)維檢查等工作。傳統(tǒng)的鐵路測量采用人工觀測方法,使用人工觀測精度高,但檢測效率低,無法滿足對鐵路進(jìn)行動態(tài)連續(xù)高精度全息測量的要求。IMU和全景相機(jī)提高了鐵路隧道檢測效率。但是,整合IMU導(dǎo)航數(shù)據(jù)和移動激光掃描數(shù)據(jù),以此獲取真實(shí)的鐵路3D信息,一直是亟待解決的難題問題。為此,同濟(jì)大學(xué)地理與測繪學(xué)院和中鐵上海設(shè)計(jì)院設(shè)計(jì)了一種基于軌跡濾波的移動激光掃描系統(tǒng)點(diǎn)云重建方法。該方法通過深度學(xué)習(xí)識別鐵路特征點(diǎn)來校正里程表數(shù)據(jù),并使用RTS(Rauch–Tung–Striebel)濾波來優(yōu)化軌跡結(jié)果。結(jié)合鐵路試驗(yàn)軌道數(shù)據(jù),RTS算法在東、北坐標(biāo)方向比較大差異可控制在7cm以內(nèi),平均高程誤差為2.39cm,優(yōu)于傳統(tǒng)的KF(Kalman?lter)算法。設(shè)計(jì)的移動測繪系統(tǒng)由激光掃描儀,全景相機(jī),軌道檢測車,IMU,GNSS系統(tǒng),計(jì)程器等組成。使用移動激光掃描系統(tǒng)進(jìn)行數(shù)據(jù)采集,并使用正射照片圖像實(shí)現(xiàn)特征點(diǎn)的自動識別和里程校正,而軌跡數(shù)據(jù)通過KF算法進(jìn)行優(yōu)化,以獲得高精度的軌跡數(shù)據(jù)。進(jìn)口慣性傳感器測量精度