工研所QPQ處理以后一般情況下工件表面粗糙度都稍有變化,即變得稍粗糙一些,但這種變化對絕大多數機械零件或機械產品來說是比較小的,既不影響使用,也不影響美觀,因此一般零件都把QPQ處理技術作為結束的一道工序,即以后不再作任何加工或處理。一般來說零件的原始表面粗糙度值越大,則QPQ處理后表面粗糙度變化越小,反之,零件的原始表面粗糙度值越小,這種影響越大。當工件表面粗糙度大到一定值以后,處理后工件表面粗糙度變化越小,當零件表面粗糙度值達到15μm時,則幾乎對表面粗糙度沒有影響。經過QPQ表面處理的刀具具有更好的熱穩定性。表面防護QPQ處理標準
氣體滲氮是在含有活性氮、碳原子的氣氛中進行低溫氮、碳共滲從而獲得以氮為主的氮碳共滲層。氣體氮化的常用溫度為560-570℃,在該溫度下氮化層硬度值高,氮化時間通常為2-3h,隨著時間延長,氮化層深度增加緩慢。相較于QPQ處理工藝,雖然氣體滲氮在耐磨性方面表現良好,但是它的生產周期太長,且必須采用特殊的滲氮鋼,表面生成的Fe2N相脆性較大。工研所QPQ技術成產周期短,適用鋼種廣,且表面生成韌性較高的Fe2~3N相,同時由于工件幾乎不變形,處理后不必進行磨加工。特別是原來以抗蝕為目的的氣體滲氮,采用工研所QPQ技術以后,耐蝕性會有很大提高。表面防護QPQ處理標準QPQ表面處理可以有效地延長刀具的使用壽命。
磷化處理時通過在金屬表面形成一層磷化物膜來防止金屬與外界環境中的氧氣、水和其它化學物質接觸,從而提高金屬的耐腐蝕性能。然而磷化處理過程可能會產生一些有害物質,例如廢水和廢氣中的重金屬離子和硝酸鹽,這對環境造成一定的污染。工研所QPQ技術是一種熱處理表面改性技術,在工藝上是熱處理技術和防腐技術的復合,在滲層組織上是氮化物層和氧化物層的復合,在滲層性能上是耐磨性和防腐性的復合。經過硫酸銅溶液腐蝕、露天放置以及鹽霧試驗進行耐蝕性能的比較,發現經過工研所QPQ處理的工件耐蝕性更優,同時工研所QPQ技術在生產過程中產生的廢氣、廢水、廢渣經處理后均滿足國家標準。
汽車曲軸、凸輪軸、氣門、摩托車齒輪、連桿、球頭銷等,它承受復雜的彎曲、扭轉載荷和一定的沖擊載荷,軸頸表面要承受磨損,凸輪部分承受變化的擠壓應力以及在挺桿的摩擦等,因此要求材料表面具有良好的耐磨性與耐蝕性能。原來一般采用鍍硬鉻來增加表面的耐磨性與耐蝕性,但鍍鉻的六價鉻離子嚴重污染環境,因此必須采用環保的工藝方法代替。工研所QPQ技術是一種環保的工藝方法,其耐磨性比鍍硬鉻高2倍,耐蝕性比鍍硬鉻高20倍,因此用工研所QPQ技術代替鍍硬鉻,耐磨性和耐蝕性都會大幅度提高。QPQ表面處理可以改善刀具的表面光潔度。
在金屬成型領域,壓鑄模、擠壓模、鍛模以及拉伸模等模具扮演著至關重要的角色。這些模具不僅要求具備很高的強度,以抵抗成型過程中的巨大壓力,還要求具有良好的抗變形能力和抗磨損能力,確保成型件的精度和質量。為了達到這些要求,模具在生產過程中必須經歷嚴格的熱處理,以增強其整體強度。然而,為了進一步延長模具的使用壽命,熱處理之后還需進行QPQ處理。工研所的QPQ處理技術通過特定的化學反應,在模具表面形成一層厚度超過10微米的化合物層。這層化合物層主要由氮化物、碳化物等硬質物質構成,極大地提高了模具表面的耐磨性,減少了因摩擦而產生的磨損。同時,化合物層以下的擴散層通過元素擴散增強了材料的微觀結構,從而提高了模具的疲勞強度。得益于QPQ處理帶來的這些明顯優勢,模具的使用壽命通常可以延長2倍以上。這不僅降低了生產成本,還提高了生產效率和產品質量,為金屬成型行業帶來了明顯的效益。QPQ表面處理可以增加刀具的表面硬度,提高其抗磨損能力。鹽浴液體氮化QPQ深度
QPQ表面處理可以改善刀具的表面光潔度,減少切削時的摩擦阻力。表面防護QPQ處理標準
QPQ技術是一種可以同時大幅度提高金屬耐磨性和耐蝕性的表面改性技術在國外被認為是冶金學領域內具有巨大意義的新技術,曾經該技術的配方由德國迪高沙公司壟斷。20世紀80年代,成都工具研究所經過長期的試驗研究自主開發了QPQ技術的鹽浴配方,不僅打破了該公司的壟斷,而且在環保方面達到國際先進水平,大量替代了國外引進技術,創造了良好的經濟效益和社會效益,曾先后榮獲國家科技進步二等獎,四川省科技進步一等獎,是“九五”期間國家重點推廣的科技項目。表面防護QPQ處理標準