在體光纖成像記錄熒光素酶的每個催化反應只產生一個光 子 , 通常肉眼無法直接觀察到, 而且光子在強散射性的生物組織中傳輸時, 將會發生吸收、 散射、 反射、 透射等大量光學行為 。 因此,必須采用高 靈敏度的光學檢測儀器( 如CCD camera)采集并定量檢測生物體內所發射的光子數量, 然后將其轉換成圖像, 在體生物發光成像中的發光光譜范圍通常為可見光到 近紅外光波段, 哺乳動物體內血紅蛋白主要吸收可見光, 水和脂質主要吸收紅外線, 但對波長為 590~1500nm的紅光至近紅外線吸收能力則較差, 因此, 大部分波長超過600nm的紅光, 經過散射、吸收后能夠穿透哺乳動物組織, 被生物體外的高靈敏光學檢測儀器探測到, 這是在體生物發光成像的理論基礎。基于在體光纖成像記錄在使用中必須彎曲和移動。黃石蛋白病毒光纖記錄
在體光纖成像記錄能夠同時測量多個光纖源的光偏振態,開啟了在許多應用中通過控制偏振態創造的反饋回路的可能性。例如,高功率的激光放大器和那些依賴于融合多個相同性質激光束產生高密度局部化光束的無透鏡成像。偏振是實現高的度激光束控制的關鍵特性之一。此外,在光學成像的應用中,基于多芯光纖的內窺鏡在使用中必須彎曲和移動。對每個光纖的光偏振態的實時監測將使科學家能夠控制并精確光纖激光束,以實現高分辨率圖像。在這項研究中,研究人員將這兩種技術應用于兩種類型的多芯光纖:保偏多芯光纖和由475個光纖芯組成的傳統光纖束。韶關在體實時影像光纖服務將使科學家能夠控制在體光纖成像記錄。
在體光纖成像記錄可見光成像體內可見光成像包括生物發光與熒光兩種技術。生物發光是用熒光素酶基因標記DNA,利用其產生的蛋白酶與相應底物發生生化反應產生生物體內的光信號;而熒光技術則采用熒光報告基因(GFP、RFP)或熒光染料(包括熒光量子點)等新型納米標記材料進行標記,利用報告基因產生的生物發光、熒光蛋白質或染料產生的熒光就可以形成體內的生物光源。前者是動物體內的自發熒光,不需要激發光源,而后者則需要外界激發光源的激發。
在體光纖成像記錄使得網絡用戶可以從中間圖像存儲系統中存儲和調用圖像文檔。網絡提供了訪問這些文件的方便方法,這樣用戶就無需親自跑到辦公室的存儲區和從遠離現場的位置申請這些文件。成像是文檔處理和工作流應用程序(管理文檔在組織機構內傳送的方式)的組成部分。許多影像學儀器或多或少對人體都有不同程度的傷害,而遠紅外熱成像診斷不會產生任何射線,無需標記藥物。因此,對人體不會造成任何傷害,對環境不會造成任何污染,而且簡便經濟。遠紅外熱成像技術實現了人類追求綠色健康的夢想,人們形象地將該技術稱為“綠色體檢”。在體光纖成像記錄要求共聚焦系統具有較高的靈敏度。
industryTemplate在體光纖成像記錄集成信號采集與數字同步模塊。韶關在體實時影像光纖服務
在體光纖成像記錄標記與藥物代謝有關的基因。黃石蛋白病毒光纖記錄
在體光纖成像記錄的目的是實時檢測細胞的活性變化。基于鈣離子濃度變化的熒光成像技術被較多用來記錄神經元活性。在體光纖記錄方法與傳統的在體電生理記錄方法有著不同的特點,光纖記錄因其穩定、方便、易上手而應用較多。首先,將熒光蛋白表達在特定類型的神經元中,光纖記錄可以實現細胞類型特異性的活性檢測,而用電生理記錄的方法記錄特定類型的神經元的活性比較困難。其次,電生理記錄容易受到環境中的電信號以及動物的行為動作影響,而光纖記錄相對來說有著較強的抗干擾性能。然后,光纖記錄相對穩定,可以很容易實現長時程的活性檢測,例如動物的整個學習過程,而利用電生理記錄實現起來則相對困難。較后,光纖記錄用神經元群體的熒光強度變化來表征神經元整體的活性變化,不能反映單個神經元的活性,而電生理記錄則能夠檢測到單個神經元的活性,具有更高的空間分辨率。黃石蛋白病毒光纖記錄