為了加強裝置的安全性,大都采用具有變壓器隔離的隔離型方案。從功率角度考慮,當選用的功率開關管的額定電壓和額定電流相同時,裝置的總功率通常和開關管的個數呈正比例關系,故全橋變換器的功率是半橋變換器的2倍,適用于中大功率的場合。基于以上考慮,本方案中補償裝置選用帶有變壓器隔離的全橋型直流變換器。借助于效率高、動態性能好、線性度高等優點,PWM(脈寬調制)技術在全橋變換器領域得到了廣發的關注和應用,已經成為了主流的控制技術。傳統的PWM直流變換器開關管工作在硬開關狀態。在硬開關的缺陷是很明顯的具體表現在:1)開關管的開關損耗隨著頻率的提高而增加;2)開關管硬關斷時電流的突變會產生加在開關管兩端的尖峰電壓,容易造成開關管被擊穿;3)開關管硬開通時其自身結電容放電會產生沖擊電流造成開關管的發熱。該傳感器的輸入為電壓,而輸出為開關、模擬電壓信號、電流信號或可聽信號。上海化成分容電壓傳感器案例
整個控制板由五個模塊構成:電源模塊、采樣及A/D轉換模塊、DSP控制模塊、PWM輸出模塊、驅動電路模塊。數字控制電路中任何一個芯片的工作都離不開電源,其中DSP芯片和A/D芯片對電源的要求很高,電源發生過電壓、欠電壓、功率不夠或電壓波動等都可能導致芯片不能正常工作甚至損壞。對于任何一個PCB板,電源模塊設計的好壞都直接影響著整個控制板工作的穩定。在設計電源模塊的時候,不僅要為整個控制板提供其所需要的所有幅值的電壓,還要保證每一個幅值的電壓值穩定、紋波小,必要時須電氣隔離,并且電源模塊須功率足夠。天津磁通門電壓傳感器聯系方式電容式電壓傳感器的工作原理很簡單。
首先滯后橋臂上開關管零電壓開通時,只有諧振電感提供換流的能量。諧振電感儲能必須大于滯后橋臂上諧振電容儲能加上變壓器原邊寄生電容儲能,在實際當中, 變壓器的原邊匝數較少, 且原邊大都用多股漆包線并繞。同時在滯后橋臂上開關管開通時,原邊電流近似為恒定,須在開關管觸發導通前諧振電容完成充放電。現在死區時間取為1.2us,結合滯后橋臂上開關管工況,諧振電感不僅為諧振電容提供充放電的能量,還向電源反饋能量,故電流ip小于超前橋臂上開關管開通時對應的電流,計算可得:Ip(lag)==10.6μH。結合諧振電感的參數協調確定諧振電容的值為10μH。
周期中斷子程序和下溢中斷子程序執行流程圖,在每一個周期中分別發生一次周期中斷和下溢出中斷,每進入中斷一次分別更新兩個比較寄存器的值,相應的輸出PWM波的移相也每一個周期都更新。在解決了具有移相角度差的PWM信號的產生問題后,需要解決的另一個問題是怎樣應用采集到的電壓信號和電流信號來實時動態控制移相角的大小,形成閉環反饋從而得到我們所需的滿足動態性能的高精度電流電壓信號。PID閉環反饋系統的設計一直是補償電源**關鍵的部分,補償系統設計的好壞直接關系到補償電源穩恒。在電壓傳感器中,測量是基于分壓器的。
基于DSP的數字控制技術具有很多優點:1)可編程,硬件電路設計完成,可以通過修改程序的方式來改變控制策略。2)采用數字控制方案,可以基于程序來實現較為復雜的先進的控制手段。3)數字化的處理和控制方式可以增強抗干擾能力,減小信號的失真、畸變等。4)可以減小和消除溫漂、器件老化等帶來的信號誤差和測量不準的問題。5)控制的精度和穩定性得到很大程度的提高。6)借助程序和快速反應的元器件實現信號采集和控制的高頻化。基于數字化控制電路的明顯的優勢,數字化也早已是工程實踐的一種趨勢。本文即采用基于DSP的數字化控制電路。基于電光效應,在電場或電壓的作用下透過某些物質的光會發生雙折射。蘇州循環測試電壓傳感器設計標準
假設我們拿著傳感器,然后把它的前列放在帶電導體附近。上海化成分容電壓傳感器案例
程序首先對系統初始化,內部定時器開始計數,計數到產生定時器中斷,主程序進入AD中斷子程序。AD片選信號置低,子程序實現對AD的初始化,初始化的主要任務是控制AD的輸入通道。AD的轉換開始信號由DSP的計時器控制,DSP循環計數,當計數器計數到設定值則進入計時中斷,中斷子程序中給AD一個低電平脈沖信號,AD開始轉換,轉換完成后AD本身產生一個低電平信號告知DSP轉換完成,DSP接收到低電平信號開始讀取數據,讀取完設定的采樣個數后打開DSP總中斷發送數據至內部處理器計算處理。如此循環往復,實現了對輸入電壓電流信號的實時采集。上海化成分容電壓傳感器案例