陶瓷前驅體的制備方法主要有溶膠 - 凝膠法、聚合物前驅體法和有機 - 無機雜化法等。溶膠 - 凝膠法是制備氧化鋯、氧化鉿納米粉體的主要技術路線,優點是大幅拓展了陶瓷產物的種類,可制備出難熔金屬碳化物、硼化物和氮化物,但也存在有效濃度低、穩定性差、易沉降和析出、不易儲存等缺點。聚合物前驅體法包括金屬有機聚合物法和金屬雜化聚合物法,優點是可以實現對聚合物分子結構的多樣化設計,具有不需要碳熱或硼熱還原就能得到無氧難熔金屬陶瓷的優越性,容易實現對無氧陶瓷組成的控制等,但也存在 M-B 鍵多為離子鍵,穩定性較差等問題。有機 - 無機雜化法是將金屬或其氧化物粉體、含金屬的化合物分散于溶液之中,經后處理、熱解制備出超高溫陶瓷,優點是原料來源易得到、成本低廉,溶劑無毒性、對環境無污染,制備工藝簡單、周期短且可控程度高,對試驗設備要求低,但也存在此法制備的前驅體為非均相體系,穩定性差,所得陶瓷元素分布不均勻等缺點。利用傅里葉變換紅外光譜可以分析陶瓷前驅體的化學結構和官能團。浙江耐酸堿陶瓷前驅體纖維
研究陶瓷前驅體熱穩定性的實驗方法之一:結構分析技術。①X 射線衍射(XRD):在不同溫度下對陶瓷前驅體進行 XRD 分析,觀察其物相組成和晶體結構的變化。如果在高溫下前驅體的物相發生明顯變化,如出現新的相或原有相的峰位、峰強發生改變,說明其熱穩定性受到影響。通過對比不同溫度下的 XRD 圖譜,可以了解前驅體的熱分解過程和產物的結晶情況。②透射電子顯微鏡(TEM):可以觀察陶瓷前驅體在納米尺度下的微觀結構,如晶粒尺寸、形貌、晶格結構等。在高溫處理前后,通過 TEM 觀察前驅體的微觀結構變化,判斷其熱穩定性。例如,若高溫處理后晶粒長大、晶格畸變或出現新的相界面,表明前驅體的熱穩定性不佳。陜西耐高溫陶瓷前驅體價格利用靜電紡絲技術結合陶瓷前驅體熱解,可以制備出直徑均勻、性能優異的陶瓷纖維。
以下是一些可以輔助研究陶瓷前驅體熱穩定性的分析技術:掃描電子顯微鏡(SEM)結合能譜分析(EDS)。①原理:SEM 用于觀察陶瓷前驅體在不同溫度下的表面形貌變化,EDS 則可以分析樣品表面的元素組成和分布。通過對比不同溫度下的 SEM 圖像和 EDS 數據,可以了解前驅體的熱分解、氧化等反應對其表面形貌和元素組成的影響。②應用:觀察陶瓷前驅體在熱過程中的表面形貌演變,如晶粒生長、孔隙形成等,同時分析元素的遷移和變化,判斷其熱穩定性。例如,在研究陶瓷涂層的前驅體時,SEM-EDS 可以幫助了解涂層在高溫下的表面結構和成分變化,評估其熱穩定性和抗氧化性能。
陶瓷前驅體在能源領域的具體應用案例:一、太陽能電池領域:在鈣鈦礦太陽能電池中,陶瓷前驅體可以用于制備鈣鈦礦材料。通過溶液法或氣相沉積法,將含有鉛、碘、甲胺等元素的陶瓷前驅體轉化為具有優異光電性能的鈣鈦礦薄膜。這種鈣鈦礦薄膜具有高吸收系數、長載流子擴散長度和合適的禁帶寬度,能夠有效提高太陽能電池的光電轉換效率。二、催化領域:浙江大學機械 306 實驗室錢森煜碩士生基于墨水直寫式打印,研制了一款具有聚甲基丙烯酸甲酯微球的陶瓷前驅體打印墨水,通過打印和燒結,制備了具有二級孔隙的多孔 SiC 陶瓷,并將其運用于甲醇重整制氫載體,以提高微反應器的氫氣產量。在 280°C 的溫度和 30000ml?g-1?h-1 的空速下,其甲醇轉化率和產氫量分別可達 90.95% 和 44.96ml/min。納米級的陶瓷前驅體顆粒有助于提高陶瓷材料的致密性和強度。
溶膠 - 凝膠法是一種常用的陶瓷前驅體制備方法。如制備氧化鋯陶瓷前驅體,可將鋯的醇鹽(如四丁氧基鋯)溶解在有機溶劑(如乙醇)中,形成均勻的溶液。然后加入適量的水和催化劑(如鹽酸),使鋯醇鹽發生水解和縮聚反應,生成氧化鋯溶膠。經過陳化、干燥等處理后,得到氧化鋯陶瓷前驅體粉末。以聚碳硅烷制備碳化硅陶瓷前驅體為例,首先通過硅烷(如甲基三氯硅烷、二甲基二氯硅烷等)的水解和縮聚反應,合成含有硅 - 碳鍵的聚合物聚碳硅烷。然后將聚碳硅烷進行高溫裂解,在裂解過程中,聚合物發生結構重排和化學鍵的斷裂與重組,轉化為碳化硅陶瓷。在這個過程中,可以通過調節原料的比例、反應條件等,控制聚碳硅烷的分子結構和性能,從而影響碳化硅陶瓷的質量和性能。
金屬有機陶瓷前驅體能夠制備出兼具金屬和陶瓷特性的復合材料,應用于航空發動機等領域。浙江陶瓷前驅體
陶瓷前驅體制備的多孔陶瓷材料具有高比表面積和良好的吸附性能,可用于廢水處理和氣體凈化。浙江耐酸堿陶瓷前驅體纖維
熱重分析(TGA)實驗中,升溫速率對陶瓷前驅體熱穩定性研究有以下幾方面影響:①對失重溫度的影響:較高的升溫速率會使陶瓷前驅體的失重溫度向高溫方向移動。這是因為在快速升溫過程中,樣品內部的溫度梯度較大,傳熱需要一定的時間,導致樣品表面和內部的反應不同步。②對失重速率的影響:升溫速率越快,失重速率通常也會增大。因為在快速升溫時,陶瓷前驅體內部的反應可能在較短時間內集中進行,導致失重速率加快。比如,在陶瓷前驅體的熱分解反應中,較高的升溫速率可能使分解反應在更短的時間內達到較高的分解速率。③對殘余物含量的影響:不同的升溫速率可能會導致殘余物的含量有所不同。一般來說,升溫速率較快時,可能會使某些反應不完全,從而影響殘余物的含量。④對熱重曲線形狀的影響:較大的升溫速率會使TGA曲線變得更加陡峭,而較小的升溫速率則使曲線更加平緩。這是因為較快的升溫速率使得樣品在短時間內經歷更大的溫度變化,從而加速了質量的損失。此外,升溫速率快往往不利于中間產物的檢出,使熱重曲線的拐點不明顯;升溫速率慢,則可以顯示熱重曲線的全過程。浙江耐酸堿陶瓷前驅體纖維