新能源領域:
電池系統:
應用場景:測試電池包結構(如冷卻系統與電芯布局)、安全性能(如防爆閥設計)。
重要價值:通過實體模型驗證設計可靠性,提升電池安全性。
儲能設備:
應用場景:驗證外殼結構強度(如戶外儲能箱防護等級)、散熱性能(如逆變器風道設計)。
重要價值:確保設備在極端環境下的穩定性。
機器人與自動化:
機械臂:
應用場景:驗證運動學性能(如關節自由度、負載能力)、碰撞檢測(如避障算法驗證)。
重要價值:通過實體模型優化機械設計,提升機器人工作效率。
自動化設備:
應用場景:測試人機交互界面(如工業機器人操作面板)、傳感器布局(如視覺識別系統)。
重要價值:確保設備易用性與生產效率的平衡。 電子產品手板,驗證裝配與功能兼容性。舟山園林工具手板
CNC加工過程:
通常包括以下幾個步驟:編程:根據零件圖紙和要求,使用的CAM(計算機輔助制造)軟件編寫加工程序。裝夾工件:將毛坯料或半成品零件安裝在機床上,并進行固定,確保加工過程中的穩定性和準確性。啟動加工:將加工程序輸入機床控制系統,啟動機床進行加工。在加工過程中,機床將按照程序指令進行切削、進給等操作。檢測與驗收:加工完成后,對零件進行檢測和驗收,確保其符合圖紙和要求。
設備類型:
CNC加工設備種類繁多,包括CNC車床、CNC銑床、CNC加工中心等。其中,CNC加工中心是一種帶有刀具庫的數控機床,可以自動換刀,對一定范圍內的工件進行各種加工操作,如鉆孔、銑削、攻螺紋等。 寧波PU手板樣件環保材料手板,符合可持續發展趨勢。
SLA激光快速成型(RP):利用激光束在計算機控制下逐層固化光敏樹脂,形成所需的三維實體。SLA手板成型速度快,可一體成型復雜結構的產品,但成本較高,且能加工的尺寸相對較小。CNC數控加工中心切削成型:通過CNC機床對整塊材料進行精確切削和加工,形成手板。CNC手板加工速度快、成本低,可以達到很高的加工精度,且材料選擇范圍廣。CNC成型已成為手板制作行業的主流技術。應用:數控手板廣泛應用于各個領域,特別是需要高精度、復雜結構和快速制作手板的場景。
按制作手段分手工手板:主要依靠手工完成制作,如早期的泥雕手板,雕刻師根據產品設計概念或圖片,利用油泥堆砌和雕刻得到產品外觀模型,對雕刻師的美感和藝術觸覺要求較高。數控手板:主要工作量由數控機床完成,可細分為:激光快速成形(RP)手板:其中 SLA 手板是用激光快速成型技術中的立體雕刻原理生產,液態光敏樹脂在紫外激光束照射下快速固化成型;SLS 手板采用粉末原料,以一定的掃描速度和能量作用于粉末材料燒結成型。加工中心(CNC)手板:用加工中心生產,能精確反映圖紙信息,表面質量高。汽車手板,模擬真實環境,測試性能。
外觀手板特點:主要側重于產品外觀的展示和驗證,對外觀尺寸、形狀、表面質量和顏色等方面要求較高,通常不考慮產品的內部結構和功能。應用:用于產品設計階段的外觀評審、市場調研和宣傳推廣等,幫助設計師和客戶直觀地感受產品的外觀效果,及時發現和修改設計缺陷。如各類電子產品的外殼手板、玩具的外觀模型等。結構手板特點:重點在于驗證產品的內部結構和裝配關系,需要準確地體現產品的各個零部件的位置、尺寸、連接方式等,對精度要求較高。應用:在產品開發過程中,用于評估產品的結構合理性、可裝配性和穩定性,以便及時優化設計。如手機、電腦等電子產品的內部結構手板,用于測試各零部件的配合和組裝工藝。精密手板,細節還原度高,提升品質感。金華手板模型公司
手板模型幫助設計師發現設計缺陷,優化產品功能。舟山園林工具手板
設計驗證與優化檢驗外觀設計:手板模型是可視且可觸摸的,能夠直觀地以實物的形式反映出設計師的創意,避免了“畫出來好看而做出來不好看”的弊端。這有助于設計師和客戶在產品開發早期階段就發現并修正設計上的不足。檢驗結構設計:手板模型是可裝配的,能夠直觀地反映出產品的結構是否合理。通過手板模型,可以討論和評審產品各部位的強度、受力情況以及安裝的難易程度,從而優化產品設計。
降低生產風險與成本避免直接開模的風險:在產品開發過程中,如果直接開模后發現結構不合理或其他問題,將造成巨大的經濟損失。而手板模型可以在開模前進行多次驗證和優化,降低了修模、改模甚至模具報廢的風險。節省材料成本:3D打印等先進制造技術使得手板模型的制作更加高效和精確,減少了材料的浪費。同時,對于復雜形狀和結構的手板模型,3D打印技術能夠輕松應對,降低了制作成本。 舟山園林工具手板