現代內窺鏡的自動對焦技術已達到毫秒級響應水平。其部件微型步進電機采用高精度細分驅動技術,通過納米級步距控制實現鏡頭的精密位移,配合亞微米級光柵反饋系統,確保對焦過程的精細度和重復性。在對焦算法層面,相位檢測對焦系統利用 CMOS 傳感器上的像素陣列,能夠在極短時間內計算出目標物的三維距離信息,配合反差檢測對焦的多區域梯度分析,構建出雙重保障機制。以奧林巴斯一代胃腸鏡為例,在人體消化道的復雜動態環境中,該系統可在 0.3 秒內完成對焦,并通過 AI 預測算法提前預判組織運動軌跡,即使面對蠕動頻率高達每分鐘 3-5 次的腸道組織,也能實時鎖定目標,為臨床診斷提供穩定清晰的可視化圖像。高幀率內窺鏡攝...
部分內窺鏡配備了諸如窄帶成像(NBI,NarrowBandImaging)這樣的前沿技術。NBI技術基于光的吸收原理,通過特殊的光學濾鏡,只允許波長在415nm(藍光波段)和540nm(綠光波段)附近的特定窄帶光波穿透并照射組織。其中,415nm藍光對血紅蛋白具有高度敏感性,能夠清晰勾勒出淺層組織;540nm綠光則可穿透至組織更深層,顯示中、深層血管結構。在正常生理狀態下,人體組織的血管分布呈現規律且有序的形態。而當組織發生早期病變時,病變細胞為滿足快速增殖需求,會誘導新生血管生成,這些異常血管在形態、分布密度及走向等方面均與正常血管存在差異。NBI技術通過強化血管與周圍組織的對比...
部分內窺鏡采用光纖傳像技術,由數萬根極細的玻璃或塑料光纖組成傳像束。這些光纖直徑通常在幾微米到幾十微米之間,每根光纖都充當光通道,通過全反射原理將探頭前端的光線信號傳導至后端。當光線進入光纖一端時,會在光纖內部的高折射率與低折射率包層界面不斷發生全反射,如同在光的“高速公路”上飛馳,直至抵達另一端。在傳像過程中,每根光纖傳輸的光線對應圖像中的一個“像素”,所有光纖按照嚴格的矩陣排列,兩端光纖陣列的位置和順序完全一致,從而確保圖像在傳輸過程中不發生扭曲和錯位。盡管光纖傳像技術具備出色的柔韌性,能夠輕松適應人體復雜的腔道結構,且生產成本相對較低,使得相關內窺鏡產品在中低端市場具備價格優...
內窺鏡攝像模組的自動曝光系統依托先進的圖像信號處理器(ISP),通過逐幀分析圖像亮度直方圖與局部亮度分布,結合自適應直方圖均衡化(AHE)和區域動態范圍優化算法,實現精細曝光調控。當鏡頭深入人體光線微弱的腔道時,系統首先采用全局曝光補償策略,通過步進電機驅動光學鏡片組增大光圈至的極限通光孔徑,同時將電子快門時間從1/30秒延長至1/4秒,并分級提升ISO增益至800。在此過程中,智能降噪模塊同步啟動,通過多幀圖像融合技術抑制噪點。而當鏡頭捕捉到金屬器械反光等強光源時,系統以微秒級響應速度觸發動態曝光抑制機制,通過高速電子快門配合可調ND減光濾鏡,在秒內將曝光量降低6檔,同時啟動高光...
部分內窺鏡配備了諸如窄帶成像(NBI,NarrowBandImaging)這樣的前沿技術。NBI技術基于光的吸收原理,通過特殊的光學濾鏡,只允許波長在415nm(藍光波段)和540nm(綠光波段)附近的特定窄帶光波穿透并照射組織。其中,415nm藍光對血紅蛋白具有高度敏感性,能夠清晰勾勒出淺層組織;540nm綠光則可穿透至組織更深層,顯示中、深層血管結構。在正常生理狀態下,人體組織的血管分布呈現規律且有序的形態。而當組織發生早期病變時,病變細胞為滿足快速增殖需求,會誘導新生血管生成,這些異常血管在形態、分布密度及走向等方面均與正常血管存在差異。NBI技術通過強化血管與周圍組織的對比...
電子變焦時,圖像處理器采用雙三次插值算法進行圖像增強處理。該算法以16×16像素矩陣為運算單元,通過分析相鄰16個像素點的亮度值分布、RGB色彩通道信息,構建高階多項式函數模型。在此基礎上,通過復雜的加權計算,精細生成每個新增像素的色彩與亮度參數,實現平滑自然的圖像放大效果。為彌補電子變焦帶來的細節損失,系統同步啟用邊緣增強算法。該算法基于Canny邊緣檢測原理,對圖像中的輪廓與紋理特征進行動態識別。通過自適應調節銳化系數,對邊緣像素進行梯度增強處理,有效補償因放大導致的細節模糊。經實驗室測試驗證,在2倍電子變焦范圍內,該算法組合可將分辨率下降幅度控制在15%以內。即使在復雜場景下...
傳感器搭載高靈敏度光電探測元件,每秒可進行 500 次圖像色溫與色調偏移檢測,配合納米級濾波片精確捕捉不同體液的光譜特性。內置的自適應算法基于傅里葉變換光譜分析技術,能夠根據膽汁的 450-580nm 黃色光譜、血液的 520-620nm 紅色光譜等特征,動態調整 RGB 三通道增益參數。系統還集成了深度學習圖像分析模塊,通過對 10 萬 + 臨床樣本的訓練,建立包含膽汁、血液、組織液等 12 種體液環境的白平衡參數數據庫。當檢測到體液變化時,智能檢索算法可在 0.1 秒內匹配參數,配合硬件級高速數字信號處理器,實現 0.5 秒內的快速白平衡校準,確保圖像色彩還原度始終保持在 98% 以上。圖...
無線內窺鏡攝像模組依托藍牙、Wi-Fi或射頻技術構建圖像傳輸鏈路。內部的無線發射模塊通過正交頻分復用(OFDM)等調制技術,將經過編碼的圖像數據,精細調制到、5GHz等特定頻段。在傳輸過程中,天線采用智能波束成形技術,通過動態調整信號發射方向,有效增強信號覆蓋范圍和接收穩定性。為保障數據傳輸的安全性與完整性,模組內置AES-256加密協議對圖像數據進行全鏈路加密,同時運用自適應均衡、信道編碼等抗干擾算法,實時補償信號衰減與多徑干擾。相較于傳統有線傳輸,無線方案使醫生在手術操作中徹底擺脫線纜束縛,配合可穿戴式接收終端,實現手術視野的靈活切換與多角度觀察,特別適用于空間狹小的微創手術等...
自動曝光就像給內窺鏡裝上了一套智能調光系統,堪稱內鏡成像的"智慧大腦"。它內置的環境光感知模塊每秒可進行數千次亮度采樣,通過實時監測圖像傳感器接收的光信號強度,精細判斷當前視野的光照條件。當內窺鏡深入人體內部,比如進入光線昏暗的腸道褶皺處時,系統會立即啟動三重調光策略:一方面驅動前端LED光源矩陣以100級精細調光模式提升亮度,同時將圖像傳感器的曝光時間從默認的1/30秒延長至1/15秒,同步將ISO感光度動態提升至800-1600區間,確保微弱光線下的黏膜紋理清晰可見;而當鏡頭捕捉到金屬器械反光或強對比區域時,智能算法會迅速將光源輸出功率降低40%-60%,并啟用HDR(高動態范...
415nm和540nm這兩個波長的選擇基于人體組織對光的吸收特性,與血紅蛋白的吸收光譜緊密相關。在可見光譜范圍內,血紅蛋白對415nm藍光和540nm綠光具有特征性吸收峰值:415nm藍光處于血紅蛋白的強吸收帶,當該波段光線照射組織時,血管中的血紅蛋白迅速吸收能量,導致局部光強度衰減,使血管在成像中呈現深棕色,實現血管位置的精確定位;而540nm綠光憑借其適中的組織穿透能力,能夠穿透黏膜淺層達深度,在避開表層組織干擾的同時,利用光散射原理呈現血管網絡的三維立體結構。臨床實踐中,通過同步采集兩種波長的圖像數據,并采用圖像融合算法進行對比分析,醫生能夠捕捉到早期變組織中血管異常增生的細...
內窺鏡模組采用模塊化設計理念,將組件拆解為鏡頭、圖像傳感器、LED光源、信號處理單元等功能模塊。各模塊通過標準化的物理接口與電氣協議進行連接,這種設計大幅提升了設備的可維護性與擴展性。當系統出現故障時,技術人員可通過故障診斷系統快速定位問題模塊,例如鏡頭出現光學畸變、傳感器產生噪點或光源亮度衰減等情況,只需使用工具在3分鐘內即可完成對應組件的更換,相較傳統整機維修,維修時間縮短超80%,維修成本降低70%。同時,模塊化架構支持用戶根據不同應用場景需求,靈活升級特定模塊性能——例如將標清鏡頭升級為4K超高清鏡頭,或換裝低功耗高亮度的新型LED光源模組,在延長設備生命周期的同時,有效降...
415nm和540nm這兩個波長的選擇基于人體組織對光的吸收特性,與血紅蛋白的吸收光譜緊密相關。在可見光譜范圍內,血紅蛋白對415nm藍光和540nm綠光具有特征性吸收峰值:415nm藍光處于血紅蛋白的強吸收帶,當該波段光線照射組織時,血管中的血紅蛋白迅速吸收能量,導致局部光強度衰減,使血管在成像中呈現深棕色,實現血管位置的精確定位;而540nm綠光憑借其適中的組織穿透能力,能夠穿透黏膜淺層達深度,在避開表層組織干擾的同時,利用光散射原理呈現血管網絡的三維立體結構。臨床實踐中,通過同步采集兩種波長的圖像數據,并采用圖像融合算法進行對比分析,醫生能夠捕捉到早期變組織中血管異常增生的細...
內窺鏡攝像模組的自動曝光系統依托先進的圖像信號處理器(ISP),通過逐幀分析圖像亮度直方圖與局部亮度分布,結合自適應直方圖均衡化(AHE)和區域動態范圍優化算法,實現精細曝光調控。當鏡頭深入人體光線微弱的腔道時,系統首先采用全局曝光補償策略,通過步進電機驅動光學鏡片組增大光圈至的極限通光孔徑,同時將電子快門時間從1/30秒延長至1/4秒,并分級提升ISO增益至800。在此過程中,智能降噪模塊同步啟動,通過多幀圖像融合技術抑制噪點。而當鏡頭捕捉到金屬器械反光等強光源時,系統以微秒級響應速度觸發動態曝光抑制機制,通過高速電子快門配合可調ND減光濾鏡,在秒內將曝光量降低6檔,同時啟動高光...
探頭前端集成的微型壓力傳感器采用先進的MEMS(微機電系統)技術,通過精密蝕刻工藝將傳感單元微型化至微米級尺寸。該傳感器具備極高的靈敏度,可實時監測的微小壓力變化,滿足內窺鏡在復雜人體腔道環境下的精細檢測需求。傳感器內置雙重安全閾值機制:當壓力達到一級預警值(如2kPa)時,操作面板上的警示燈開始閃爍,同時在顯示屏邊緣以淡紅色線條提示潛在風險區域;若壓力突破二級安全閾值(如3kPa),傳感器將立即觸發高分貝蜂鳴報警,并通過閉環控制電路啟動智能回退程序,以每秒的恒定速度自動收回探頭。與此同時,系統利用增強現實(AR)技術在顯示屏上用醒目的紅色高亮標記壓力異常區域,疊加顯示壓力數值及風...
內窺鏡攝像模組的自動曝光系統依托先進的圖像信號處理器(ISP),通過逐幀分析圖像亮度直方圖與局部亮度分布,結合自適應直方圖均衡化(AHE)和區域動態范圍優化算法,實現精細曝光調控。當鏡頭深入人體光線微弱的腔道時,系統首先采用全局曝光補償策略,通過步進電機驅動光學鏡片組增大光圈至的極限通光孔徑,同時將電子快門時間從1/30秒延長至1/4秒,并分級提升ISO增益至800。在此過程中,智能降噪模塊同步啟動,通過多幀圖像融合技術抑制噪點。而當鏡頭捕捉到金屬器械反光等強光源時,系統以微秒級響應速度觸發動態曝光抑制機制,通過高速電子快門配合可調ND減光濾鏡,在秒內將曝光量降低6檔,同時啟動高光...
探頭前端集成的微型壓力傳感器采用先進的MEMS(微機電系統)技術,通過精密蝕刻工藝將傳感單元微型化至微米級尺寸。該傳感器具備極高的靈敏度,可實時監測的微小壓力變化,滿足內窺鏡在復雜人體腔道環境下的精細檢測需求。傳感器內置雙重安全閾值機制:當壓力達到一級預警值(如2kPa)時,操作面板上的警示燈開始閃爍,同時在顯示屏邊緣以淡紅色線條提示潛在風險區域;若壓力突破二級安全閾值(如3kPa),傳感器將立即觸發高分貝蜂鳴報警,并通過閉環控制電路啟動智能回退程序,以每秒的恒定速度自動收回探頭。與此同時,系統利用增強現實(AR)技術在顯示屏上用醒目的紅色高亮標記壓力異常區域,疊加顯示壓力數值及風...
多光譜內窺鏡模組基于分光成像技術,通過精密電控濾光片輪實現 400-1000nm 寬光譜范圍內的波段快速切換,單次光譜采集可覆蓋紫外、可見光及近紅外三個光譜區間。其工作原理利用生物組織對不同光譜的特異性光學響應:正常組織細胞內的血紅蛋白、水等成分在可見光波段(400-700nm)存在固定吸收峰,而因代謝異常導致的血紅蛋白濃度升高、細胞結構變化,在 800nm 近紅外波段呈現增強的光吸收特性。系統內置的高靈敏度 CMOS 圖像傳感器陣列,可同步采集同一視野下的多波段圖像數據,經深度學習圖像融合算法處理后,能夠將不同光譜通道的特征信息進行加權疊加,終生成包含組織結構與代謝信息的偽彩色圖像,使微小病...
為延長電池供電設備的使用時間,內窺鏡攝像模組構建了多層次低功耗管理體系。在組件層面,圖像傳感器搭載新型背照式CMOS芯片,通過像素級動態電壓調節技術,將單位像素能耗降低40%;處理器采用異構多核架構,可根據圖像數據處理復雜度,智能切換高性能模式與節能模式,實現能效比比較大化。照明系統集成環境光傳感器與自適應驅動電路,在暗環境下啟用高亮度模式,明亮環境中自動降檔,配合光通量均勻度達95%的導光結構,在保證清晰成像的同時降低30%能耗。模組具備四級休眠機制:短暫閑置時關閉非必要外設;5分鐘無操作進入深度睡眠,保留陀螺儀和中斷喚醒電路;超過30分鐘自動關機,喚醒響應時間控制在500毫秒以...
為適應人體腔道的濕潤環境及嚴苛的消毒需求,內窺鏡攝像模組采用了精密的防水密封設計體系。其探頭外殼選用符合ISO10993生物安全性標準的醫用級316L不銹鋼或具有特性的聚醚醚酮(PEEK)高分子材料,這種材質不僅具備耐腐蝕性,還能有效抵御消毒試劑的化學侵蝕。在密封工藝上,通過雙重O型密封圈疊加設計,配合食品級防水硅膠進行二次填充,在探頭與線纜接頭、數據傳輸接口等關鍵部位構建起多層級防水屏障。經實測,該密封結構可承受水壓達30分鐘無滲漏,同時滿足EN13060標準規定的134℃高溫高壓蒸汽滅菌20分鐘循環測試,確保模組在復雜醫療環境下既能防止液體滲入損壞高精密CMOS圖像傳感器、微型...
部分醫用內窺鏡配備了精密的聲音采集功能,其實現原理是在手柄或探頭內部集成微型MEMS(微機電系統)麥克風。這類麥克風經過特殊設計,具有高靈敏度、寬頻響特性,能夠精細捕捉人體內部低至20dB的微弱聲音信號。在胃腸鏡檢查過程中,它可以清晰采集到胃壁肌肉收縮的摩擦音、腸道氣體流動的氣過水聲;而在支氣管鏡檢查時,則能記錄呼吸氣流的湍流聲、氣道狹窄產生的喘鳴音等。這些聲音信號通過內置的AD轉換模塊,以、16bit精度轉化為數字音頻,并與高清圖像數據進行時間戳同步編碼,存儲在醫學影像工作站中。醫生在病例回顧階段,既可以通過專業分析軟件將聲音可視化成頻譜圖,輔助判斷異常呼吸音的頻率特征;也能將聲...
內窺鏡攝像模組的電子變焦基于數字圖像處理技術,通過圖像處理器對原始圖像進行精細化運算實現放大效果。當醫生在手術中啟動變焦功能后,處理器首先解析用戶設定的放大倍數參數,隨后啟動超分辨率插值算法——該算法采用雙三次插值法,在保持原有像素信息的基礎上,通過計算相鄰像素間的色彩和亮度梯度,動態生成新增像素。為應對數字放大帶來的鋸齒效應和噪點問題,模組集成了智能邊緣增強模塊,該模塊通過識別組織輪廓,采用拉普拉斯銳化算法強化邊界細節;同時配合多級降噪神經網絡,針對不同光照條件下的圖像噪點進行動態抑制。經實測,在8倍變焦范圍內,模組仍能維持≥900線的水平分辨率,可清晰呈現直徑的血管紋理,充分滿...
內窺鏡白平衡失準會導致圖像出現嚴重的顏色偏差問題。從光學原理來看,當內窺鏡的白平衡設置與實際光源色溫不匹配時,CMOS 或 CCD 圖像傳感器采集的紅、綠、藍三原色信號比例失調,從而造成色彩還原失真。例如在使用氙氣燈作為照明光源的手術場景中,若白平衡未正確校準,白色的人體組織在顯示屏上可能會呈現出明顯的黃色調;而在 LED 冷光源環境下,未經校準的白平衡則可能使組織顏色偏藍。這種顏色失真不僅影響圖像的視覺觀感,更關鍵的是會干擾醫生對組織健康狀態的判斷 —— 炎癥部位的泛紅可能因白平衡問題被掩蓋,病變組織的顏色特征也可能被錯誤呈現。現代內窺鏡系統通常配備自動白平衡(AWB)和手動校準功能。自動白...
為適應人體腔道的濕潤環境及嚴苛的消毒需求,內窺鏡攝像模組采用了精密的防水密封設計體系。其探頭外殼選用符合ISO10993生物安全性標準的醫用級316L不銹鋼或具有特性的聚醚醚酮(PEEK)高分子材料,這種材質不僅具備耐腐蝕性,還能有效抵御消毒試劑的化學侵蝕。在密封工藝上,通過雙重O型密封圈疊加設計,配合食品級防水硅膠進行二次填充,在探頭與線纜接頭、數據傳輸接口等關鍵部位構建起多層級防水屏障。經實測,該密封結構可承受水壓達30分鐘無滲漏,同時滿足EN13060標準規定的134℃高溫高壓蒸汽滅菌20分鐘循環測試,確保模組在復雜醫療環境下既能防止液體滲入損壞高精密CMOS圖像傳感器、微型...
內窺鏡的鏡頭與傳感器采用精密微型化設計,鏡頭部分集成高解析度光學鏡片組,通過特殊的微型球鉸結構與傳感器相連,即使探頭發生 360° 彎曲,鏡頭仍能保持水平視角,確保畫面穩定捕捉。信號傳輸層面,柔性線路板(FPC)采用超薄聚酰亞胺基材,通過激光蝕刻工藝將導線間距壓縮至 50μm,配合可彎折的加固型連接器,實現彎曲半徑小于 5mm 的無損傳輸;而光纖傳輸方案則使用多模漸變折射率光纖,通過精密涂覆工藝提升柔韌性,在保證 500 萬像素圖像零延遲傳輸的同時,可承受百萬次彎曲測試。此外,模組內置三軸 MEMS 陀螺儀與加速度計,結合自適應防抖算法,能實時檢測探頭運動軌跡,通過音圈電機驅動鏡頭進行反向補償...
雙攝像頭以 15° 固定夾角對稱分布于內窺鏡模組前端,利用立體視覺原理同步采集同一目標的左右視角圖像。通過特征點匹配算法識別兩幅圖像中的對應像素,獲取視差信息。基于三角測量原理,利用已知的攝像頭間距(基線長度)和視差數據,精確計算出物體與鏡頭的三維空間距離。結合深度圖生成算法,將距離信息轉化為深度值矩陣,構建出高精度三維點云模型。相較于單目攝像頭的二維重建,雙視角數據有效解決了深度信息歧義問題,配合亞像素級圖像處理技術,可將模型的深度誤差控制在 0.5mm 以內,為臨床診療提供精確的空間位置參考。高幀率攝像模組減少動態拍攝拖影,在體育賽事與工業自動化檢測中優勢斐然 。福田區紅外攝像頭模組供應商...
在使用前,內窺鏡模組的色彩校準是確保成像準確性的關鍵步驟。出廠階段,生產廠家會采用專業的標準色卡(如X-RiteColorChecker或IT8色卡)作為參照,通過精密儀器調整模組的白平衡、色階、飽和度等參數,建立準確的色彩映射關系,使模組拍攝的圖像色彩與真實場景高度吻合。對于醫療級內窺鏡,系統還配備了智能色彩校準功能:醫生在手術或診療前,可通過觸控屏手動選取色卡樣本,或直接掃描手術器械、組織樣本進行實時校準。此外,內置的圖像處理器會利用先進的算法(如自適應色彩補償、多光譜融合技術)對原始圖像進行動態校正,自動補償因光源差異、鏡頭畸變等因素導致的色彩偏差。通過多重校準機制協同作用,...
雙攝像頭以 15° 固定夾角對稱分布于內窺鏡模組前端,利用立體視覺原理同步采集同一目標的左右視角圖像。通過特征點匹配算法識別兩幅圖像中的對應像素,獲取視差信息。基于三角測量原理,利用已知的攝像頭間距(基線長度)和視差數據,精確計算出物體與鏡頭的三維空間距離。結合深度圖生成算法,將距離信息轉化為深度值矩陣,構建出高精度三維點云模型。相較于單目攝像頭的二維重建,雙視角數據有效解決了深度信息歧義問題,配合亞像素級圖像處理技術,可將模型的深度誤差控制在 0.5mm 以內,為臨床診療提供精確的空間位置參考。醫療診斷急需高清內窺鏡模組?全視光電產品成像清晰,助力醫生判斷!湖北工業攝像頭模組設備內窺鏡攝像模...
光學變焦的原理基于鏡頭光學系統的物理特性,通過精密的機械結構驅動鏡頭組內的鏡片移動。以常見的變焦鏡頭為例,當用戶操作放大功能時,鏡頭內部的變焦環會帶動多組鏡片前后位移,改變光線匯聚的焦點位置,從而實現視角的放大或縮小。這種物理層面的焦距調整,就像望遠鏡通過調整鏡筒長度來改變觀測距離,所獲取的圖像細節全部來自真實的光學成像,因此能夠保持高分辨率和色彩還原度,畫面放大后依然清晰銳利。電子變焦本質上是一種數字圖像處理技術,當用戶選擇電子變焦時,設備會利用內置算法對傳感器捕獲的原始圖像進行像素插值運算。簡單來說,就是通過軟件將圖像中的像素點進行復制、拉伸或填充,模擬出放大效果,類似于在電腦...
無線內窺鏡采用無線信號傳輸圖像,其原理類似于手機通過WiFi傳輸數據。設備內部集成的無線發射模塊,會先將CMOS或CCD圖像傳感器捕捉到的原始影像,經數字信號處理器(DSP)進行降噪、色彩校正等預處理,轉化為標準視頻格式數據。隨后,無線發射模塊將處理后的圖像信號調制到特定頻段(如或5GHz),以電磁波形式發射出去。接收端配備的高增益天線精細捕捉信號,經解調解碼后,再由顯示驅動芯片將數字信號還原成高清圖像,實時呈現在顯示屏上。為確保傳輸穩定性,系統通常采用OFDM(正交頻分復用)技術分散信號頻譜,降低多徑干擾;同時運用AES-128或更高等級加密算法,對數據進行端到端加密,防止圖像信...
導光纖維的光學結構基于光的全反射原理構建,其由高折射率的芯層與低折射率的包層同軸嵌套組成。當光線以合適角度進入芯層,在芯層與包層的界面處因折射率差異產生全反射,從而實現光線在光纖內的長距離低損耗傳輸。在光纖束制造過程中,需采用微米級精度的排列技術,將數萬根單絲光纖按特定陣列規則排布,隨后通過精密端面研磨工藝,確保每根光纖的長度誤差控制在 ±10 微米以內,以維持光程一致性。為解決照明區域的亮度均勻性問題,光纖束末端通常加裝由微結構漫射材料制成的漫射器,該裝置通過多次折射與散射,將集中的光線均勻擴散至 360° 空間,終實現探頭前端無陰影、高亮度的照明效果,為內窺鏡成像提供理想的光源條件。全視光...