在現代,各種先進制造技術在金屬粉末燒結板領域得到廣泛應用。除了前面提到的 3D 打印技術和納米粉末冶金技術外,計算機模擬與仿真技術也發揮著重要作用。通過計算機模擬,可以在實際制造之前對粉末的流動、成型過程以及燒結過程中的溫度場、應力場等進行模擬分析,預測產品性能,優化工藝參數,減少實驗次數,降低研發成本和周期。例如,在設計新型航空發動機用金屬粉末燒結板時,利用計算機模擬技術可以提前評估不同工藝參數下燒結板的性能,從而確定比較好的制造工藝。開發含貴金屬催化劑的金屬粉末,用于化工反應中的高效催化燒結板。綿陽金屬粉末燒結板多少錢一公斤在球磨機中,金屬物料與研磨介質(如鋼球)一同置于旋轉的筒體中。筒體...
金屬粉末燒結板作為一種重要的材料,在眾多領域發揮著關鍵作用。其發展與粉末冶金技術的進步緊密相連,從早期簡單的應用逐步發展成為現代工業中不可或缺的材料。了解金屬粉末燒結板的發展歷程、現狀及未來趨勢,對于推動其在更多領域的應用和技術創新具有重要意義。粉末冶金方法起源于公元000 年后,埃及人在一種風箱中用碳還原氧化鐵得到海綿鐵,經高溫鍛造制成致密塊,再錘打成鐵器件,這可以看作是粉末冶金技術的雛形。19 世紀初,俄、英等國將鉑粉經冷壓、燒結,再進行熱鍛得到致密鉑,并加工成錢幣和貴重器物,進一步展示了粉末冶金的可能性,但此時技術尚處于初級階段,應用范圍極為有限。運用納米級金屬粉末,憑借其高比表面積特性...
相較于傳統的金屬熔煉和加工工藝,金屬粉末燒結板的制造過程能耗較低。在燒結環節,雖然需要對成型坯體進行加熱,但由于燒結溫度低于金屬熔點,且通過優化燒結工藝(如采用快速燒結技術、精細控制加熱時間和溫度曲線等),能夠有效減少能源消耗。同時,在整個生產過程中,由于材料利用率高,減少了因大量廢料產生和處理所帶來的額外能源消耗,符合節能減排的環保要求,有助于降低工業生產對環境的能源壓力。金屬粉末燒結板工藝由于實現了近凈成形,減少了廢料的產生。與傳統機械加工過程中產生大量金屬切屑等廢料不同,該工藝產生的廢料主要是少量未燒結完全或不符合質量要求的產品,這些廢料可以通過回收和再加工重新利用,降低了對新原材料的需...
金屬粉末燒結板能夠根據不同應用場景的特殊需求進行定制化生產。通過靈活調整粉末的成分、粒度以及制備工藝等參數,可以精確調控燒結板的性能,如強度、硬度、孔隙率、導電性、導熱性等。例如,在過濾領域,根據不同的過濾介質和過濾精度要求,可以定制具有特定孔徑分布和孔隙率的金屬粉末燒結板;在電子領域,根據不同電子元件的性能需求,可以設計合成具有特定電磁性能的粉末,制造出滿足要求的燒結板。這種定制化能力使得金屬粉末燒結板能夠更好地適應多樣化的市場需求,為各行業的技術創新和產品升級提供有力支持。制備表面接枝有機分子的金屬粉末,改善粉末間結合力,優化燒結板成型效果。臺州金屬粉末燒結板供應商在金屬粉末燒結板的制備過...
燒結是金屬粉末燒結板生產過程中的關鍵環節,其本質是在一定溫度和氣氛條件下,使成型坯體中的粉末顆粒之間發生原子擴散、結合,從而提高坯體的密度、強度和其他性能的過程。在燒結過程中,隨著溫度的升高,粉末顆粒表面的原子獲得足夠的能量,開始活躍起來,逐漸從一個顆粒表面遷移到另一個顆粒表面,形成燒結頸。隨著燒結時間的延長,燒結頸不斷長大,顆粒之間的接觸面積逐漸增大,孔隙逐漸縮小。同時,原子的擴散還導致晶粒的生長和再結晶,使坯體的組織結構逐漸變得更加致密和均勻。合成含稀土元素的金屬粉末,改善燒結板的微觀組織,提高其高溫穩定性與抗氧化性。潮州金屬粉末燒結板活動價常規燒結:在合適溫度和氣氛(氫氣、氮氣、真空等)...
在球磨機中,金屬物料與研磨介質(如鋼球)一同置于旋轉的筒體中。筒體轉動時,研磨介質隨筒體上升到一定高度后落下,對物料產生沖擊和研磨作用,使物料逐漸破碎成粉末。球磨機的優點是能夠處理各種硬度的金屬材料,且可通過調整研磨時間、研磨介質的種類和數量等參數,控制粉末的粒度。但其缺點是粉末形狀不規則,粒度分布較寬,在粉碎過程中容易引入雜質,如設備部件的磨損碎屑等。棒磨機則是利用棒作為研磨介質,其工作原理與球磨機類似,但由于棒的接觸方式和運動軌跡與球不同,在粉碎過程中對物料的選擇性破碎作用更強,能夠獲得粒度相對更均勻的粉末。振動磨通過高頻振動使研磨介質與物料在研磨腔內劇烈碰撞和摩擦,從而實現物料的粉碎。振...
燒結過程一般可分為三個階段:初期階段,顆粒之間由點接觸逐漸轉變為面接觸,形成燒結頸,坯體的強度和導電性開始增加,但密度變化較小;中期階段,燒結頸快速長大,顆粒之間的距離進一步減小,孔隙率明顯降低,坯體的密度和強度顯著提高;后期階段,大部分孔隙被消除,坯體接近理論密度,晶粒繼續長大,組織趨于穩定,但如果燒結時間過長,可能會導致晶粒過度長大,影響燒結板的性能。燒結溫度是影響燒結質量的重要因素之一。溫度過低,粉末顆粒的原子活性不足,擴散速率慢,燒結頸難以形成和長大,導致燒結不完全,坯體的密度和強度達不到要求。隨著燒結溫度的升高,原子擴散速率加快,燒結過程加速,能夠獲得更高密度和強度的燒結板。合成具有...
隨著電子設備向小型化、輕量化、高性能化方向發展,金屬粉末燒結板在電子信息領域的應用愈發。軟磁粉末冶金材料燒結板用于制造變壓器、電感器等電子元件,其良好的磁性能能夠提高電子設備的信號處理能力和能量轉換效率。銅 - 鎢、銅 - 鉬等粉末冶金金屬基復合材料燒結板用于大功率電子器件的散熱基板和封裝外殼,其高導熱性和良好的熱穩定性能夠有效解決電子器件的散熱問題,保證電子設備在高功率運行下的穩定性和可靠性。此外,在電子連接器等部件中,金屬粉末燒結板的高精度和良好的導電性也使其成為理想的材料選擇。創新設計核殼結構粉末,內核與外殼協同作用,使燒結板擁有獨特的物理與化學性能。珠海金屬粉末燒結板活動價金屬粉末燒結...
熱等靜壓則是在高溫高壓同時作用下進行的成型方法。在熱等靜壓過程中,粉末不僅受到壓力的作用,還在高溫下發生原子擴散和再結晶等過程,能夠使坯體更快地達到致密化,且獲得的燒結板組織更加均勻,性能更加優異。熱等靜壓適用于制造高性能的金屬粉末燒結板,如航空發動機的高溫部件、醫療器械中的關鍵零件等。然而,熱等靜壓設備成本極高,對設備的密封、加熱和控溫系統要求極為嚴格,且生產過程中的能耗較大。注射成型是將金屬粉末與適量的粘結劑混合均勻后,制成具有良好流動性的注射料,然后通過注射機將注射料注入模具型腔中成型的方法。這種成型工藝特別適合制造形狀復雜、精度要求高的小型金屬粉末燒結板,在電子、醫療、汽車等領域有***...
隨著電子設備向小型化、輕量化、高性能化方向發展,金屬粉末燒結板在電子信息領域的應用愈發。軟磁粉末冶金材料燒結板用于制造變壓器、電感器等電子元件,其良好的磁性能能夠提高電子設備的信號處理能力和能量轉換效率。銅 - 鎢、銅 - 鉬等粉末冶金金屬基復合材料燒結板用于大功率電子器件的散熱基板和封裝外殼,其高導熱性和良好的熱穩定性能夠有效解決電子器件的散熱問題,保證電子設備在高功率運行下的穩定性和可靠性。此外,在電子連接器等部件中,金屬粉末燒結板的高精度和良好的導電性也使其成為理想的材料選擇。設計含熱致變色材料的金屬粉末,讓燒結板根據溫度改變顏色,用于溫度指示。無錫金屬粉末燒結板貨源源頭同時,自動化生產...
通過科學設計粉末成分和精細調控燒結工藝,金屬粉末燒結板能夠獲得出色的力學性能。在機械制造領域廣泛應用的粉末冶金高速鋼燒結板,其內部組織結構經過優化,形成了均勻分布的硬質相,賦予了燒結板極高的硬度和強度。這種度和高硬度使得燒結板在承受高載荷和惡劣工作條件時,依然能夠保持穩定的性能,有效抵抗磨損和變形,延長了零部件的使用壽命,提高了設備的可靠性和生產效率。在保證度和高硬度的同時,金屬粉末燒結板還能通過合理的工藝手段具備良好的韌性。例如,在航空發動機的渦輪盤制造中,采用粉末冶金鎳基高溫合金燒結板,通過控制粉末粒度、燒結溫度和時間等參數,在提高材料高溫強度的同時,優化其微觀組織結構,使其具有較好的韌性...
霧化法是將熔融的金屬液通過高壓氣體(如氮氣、氬氣)或高速水流的沖擊,使其分散成細小的液滴,這些液滴在飛行過程中迅速冷卻凝固,形成金屬粉末。根據霧化介質的不同,霧化法可分為氣體霧化法和水霧化法。氣體霧化法中,高壓氣體以高速從噴嘴噴出,沖擊從上方流下的金屬液流,將其破碎成微小液滴。由于氣體的冷卻速度相對較慢,使得液滴在凝固過程中有一定的時間進行內部原子的擴散和重組,因此氣體霧化法制備的粉末球形度高,流動性好,且內部組織均勻,雜質含量低。這種高質量的粉末適合用于制造高性能的金屬粉末燒結板,如航空航天領域的關鍵部件。然而,氣體霧化法設備復雜,成本較高,對氣體的純度和壓力控制要求嚴格。研發含碳納米纖維增...
金屬粉末燒結技術早可追溯至20世紀初,當時主要用于制備鎢絲等簡單制品。20世紀30年代,德國率先開發出青銅燒結過濾器,標志著金屬粉末燒結板開始進入工業應用領域。這一階段的產品主要采用簡單的壓制-燒結工藝,材料體系以銅、鎳等傳統金屬為主,產品性能相對單一。隨著粉末冶金技術的進步,金屬粉末燒結板進入快速發展期。不銹鋼、鈦合金等新材料體系相繼出現,等靜壓、粉末軋制等新工藝開始應用。產品性能提升,應用領域從簡單的過濾擴展到化工、汽車等多個行業。采用超聲處理金屬粉末,細化顆粒,改善燒結板的均勻性與性能穩定性。溫州金屬粉末燒結板制造廠家模壓成型是將經過預處理的金屬粉末放入特定模具中,在一定壓力下使其壓實成...
金屬粉末燒結板在耐腐蝕性能方面表現,特別是一些采用特殊合金粉末制造的燒結板。以鈦合金粉末燒結板為例,其表面能夠形成一層致密的氧化膜,這層氧化膜具有極強的穩定性,能夠有效阻止外界腐蝕介質的侵蝕。在化工、海洋等惡劣腐蝕環境中,鈦合金粉末燒結板可用于制應釜、管道、閥門等設備,能夠長期穩定運行,減少設備維護和更換頻率,降低生產成本,提高生產的連續性和穩定性。在高溫環境下,金屬粉末燒結板的抗氧化性能至關重要。一些高溫合金粉末燒結板,如含有鉻、鋁等抗氧化元素的合金燒結板,在高溫下能夠在表面形成一層連續、致密的氧化物保護膜,阻止氧氣進一步向內部擴散,從而有效抑制金屬的氧化過程。這使得燒結板在高溫爐窯、航空發...
對金屬粉末進行表面改性是提升燒結板性能的有效手段。通過物理或化學方法在粉末表面引入特定的涂層或功能基團,可改善粉末的流動性、燒結活性以及與其他材料的相容性。例如,在金屬粉末表面包覆一層石墨烯,利用石墨烯優異的力學性能、導電性和導熱性,能夠增強燒結板的綜合性能。在復合材料領域,以表面包覆石墨烯的鋁粉制備的燒結板,其強度比未改性鋁粉燒結板提高了30%-40%,同時導電性和導熱性也得到明顯提升。石墨烯涂層還能有效阻止鋁粉的氧化,提高材料的耐腐蝕性。在環保領域,為了提高金屬粉末燒結板在污水處理中的過濾性能,對粉末進行表面親水性改性。通過在金屬粉末表面接枝親水性聚合物,如聚乙二醇等,使燒結板表面具有良好...
同時,自動化生產技術在金屬粉末燒結板制造中的應用越來越普及。從粉末的配料、成型到燒結,整個生產過程可以實現自動化控制,提高生產效率和產品質量的穩定性。自動化生產線能夠精確控制每個生產環節的參數,減少人為因素的干擾,保證產品質量的一致性。例如,一些大型粉末冶金企業采用自動化生產線生產金屬粉末燒結板,每天能夠生產大量規格一致、性能穩定的產品。不斷有新的材料體系被開發應用于金屬粉末燒結板。除了傳統的金屬及合金材料,金屬基復合材料粉末燒結板也成為研究熱點。通過在金屬粉末中添加各種增強相(如陶瓷顆粒、纖維等),制備出性能優異的金屬基復合材料燒結板。這些復合材料結合了金屬和增強相的優點,具有度、高硬度、耐...
通過科學設計粉末成分和精細調控燒結工藝,金屬粉末燒結板能夠獲得出色的力學性能。在機械制造領域廣泛應用的粉末冶金高速鋼燒結板,其內部組織結構經過優化,形成了均勻分布的硬質相,賦予了燒結板極高的硬度和強度。這種度和高硬度使得燒結板在承受高載荷和惡劣工作條件時,依然能夠保持穩定的性能,有效抵抗磨損和變形,延長了零部件的使用壽命,提高了設備的可靠性和生產效率。在保證度和高硬度的同時,金屬粉末燒結板還能通過合理的工藝手段具備良好的韌性。例如,在航空發動機的渦輪盤制造中,采用粉末冶金鎳基高溫合金燒結板,通過控制粉末粒度、燒結溫度和時間等參數,在提高材料高溫強度的同時,優化其微觀組織結構,使其具有較好的韌性...
燒結過程一般可分為三個階段:初期階段,顆粒之間由點接觸逐漸轉變為面接觸,形成燒結頸,坯體的強度和導電性開始增加,但密度變化較小;中期階段,燒結頸快速長大,顆粒之間的距離進一步減小,孔隙率明顯降低,坯體的密度和強度顯著提高;后期階段,大部分孔隙被消除,坯體接近理論密度,晶粒繼續長大,組織趨于穩定,但如果燒結時間過長,可能會導致晶粒過度長大,影響燒結板的性能。燒結溫度是影響燒結質量的重要因素之一。溫度過低,粉末顆粒的原子活性不足,擴散速率慢,燒結頸難以形成和長大,導致燒結不完全,坯體的密度和強度達不到要求。隨著燒結溫度的升高,原子擴散速率加快,燒結過程加速,能夠獲得更高密度和強度的燒結板。合成含稀...
20世紀60年代末至70年代初,粉末高速鋼、粉末高溫合金相繼出現,促進了粉末鍛造及熱等靜壓技術的發展及在度零件上的應用。這一時期,金屬粉末燒結板的材料種類更加豐富,除了傳統的鋼鐵材料,各種合金粉末被廣泛應用于燒結板的制造。通過合理設計合金成分,能夠使燒結板獲得更優異的性能,如高溫合金粉末燒結板在航空航天領域展現出巨大優勢,可用于制造發動機部件等,滿足了航空航天等領域對材料耐高溫、度等性能的嚴苛要求。同時,在燒結工藝方面,熱壓燒結、放電等離子燒結(SPS)等新型燒結技術不斷涌現。熱壓燒結在燒結時施壓,能降低燒結溫度、縮短時間,獲得更高密度和性能的制品;放電等離子燒結通過脈沖電流產生放電等離子體和...
同時,自動化生產技術在金屬粉末燒結板制造中的應用越來越普及。從粉末的配料、成型到燒結,整個生產過程可以實現自動化控制,提高生產效率和產品質量的穩定性。自動化生產線能夠精確控制每個生產環節的參數,減少人為因素的干擾,保證產品質量的一致性。例如,一些大型粉末冶金企業采用自動化生產線生產金屬粉末燒結板,每天能夠生產大量規格一致、性能穩定的產品。不斷有新的材料體系被開發應用于金屬粉末燒結板。除了傳統的金屬及合金材料,金屬基復合材料粉末燒結板也成為研究熱點。通過在金屬粉末中添加各種增強相(如陶瓷顆粒、纖維等),制備出性能優異的金屬基復合材料燒結板。這些復合材料結合了金屬和增強相的優點,具有度、高硬度、耐...
模壓成型是將經過預處理的金屬粉末放入特定模具中,在一定壓力下使其壓實成型的方法。這是一種較為傳統且應用的成型工藝,適用于制造形狀相對簡單、尺寸精度要求較高的金屬粉末燒結板。模壓成型的過程一般包括裝粉、壓制、脫模三個步驟。裝粉時,要確保粉末均勻地填充到模具型腔中,避免出現粉末堆積不均勻或有空隙的情況,否則會導致壓制后的坯體密度不均勻。壓制過程中,壓力的大小、施加方式和保壓時間是影響坯體質量的關鍵因素。壓力過小,粉末顆粒之間結合不緊密,坯體強度低,在后續處理過程中容易出現變形或破裂;壓力過大,則可能導致模具損壞,同時坯體內部可能產生較大的內應力,在燒結過程中引起變形甚至開裂。合適的保壓時間能夠使粉...
鈦基粉末以其優異的耐腐蝕性和生物相容性著稱,在化工、醫療等領域應用,如化工設備的耐腐蝕部件、人工關節等醫療器械的燒結板制造。鎳基粉末特別是在高溫合金中,能顯著提高材料的高溫強度和抗氧化性能,常用于航空發動機高溫部件、燃氣輪機葉片等燒結板的生產。鎢基粉末由于其高熔點和高硬度,常用于制造耐高溫、耐磨的燒結板,如在冶金、礦山等惡劣工況下使用的機械部件。粉末質量是決定燒結板性能的關鍵因素之一。質量的金屬粉末應具備高純度、均勻的粒度分布以及合適的顆粒形狀。高純度的粉末可減少雜質對燒結板性能的負面影響,確保其在物理、化學和力學性能上的穩定性。例如,在電子領域應用的燒結板,若金屬粉末中含有雜質,可能會影響其...
等靜壓成型是利用液體均勻傳遞壓力的特性,將金屬粉末裝入彈性模具中,然后放入高壓容器中,通過向容器內的液體施加壓力,使粉末在各個方向上受到均勻的壓力而壓實成型。根據成型時溫度的不同,等靜壓成型可分為冷等靜壓和熱等靜壓。冷等靜壓是在室溫下進行的等靜壓成型方法。其優點是能夠制備形狀復雜、尺寸較大的坯體,且坯體各方向的密度均勻,內部應力小。這是因為在冷等靜壓過程中,粉末在液體均勻壓力的作用下,能夠在模具內自由流動并填充各個角落,從而實現均勻壓實。冷等靜壓常用于制造大型的金屬粉末燒結板,如航空航天領域的大型結構件、化工設備中的大型反應釜內襯等。但冷等靜壓設備投資較大,操作過程相對復雜,生產周期較長。采用...
強度:通過合理設計合金成分和優化燒結工藝,金屬粉末燒結板可以獲得較高的強度。如粉末冶金高速鋼燒結板在機械加工領域展現出良好的耐磨性和度,能夠承受較大的載荷。硬度:硬度與材料成分和燒結后的組織結構密切相關。一般來說,含有硬質相的合金粉末燒結板硬度較高,適用于需要耐磨的應用場景,如礦山機械中的一些部件采用高硬度的金屬粉末燒結板制造。韌性:在保證一定強度和硬度的前提下,通過調整工藝和成分,也可以使燒結板具有較好的韌性,避免在使用過程中發生脆性斷裂。例如,在一些承受沖擊載荷的零件中,需要燒結板具備良好的韌性。研發含碳納米纖維增強的金屬粉末,提高燒結板的抗疲勞性能與韌性。深圳金屬粉末燒結板供應商金屬粉末...
由于金屬粉末燒結板具有優異的性能,使用其制造的產品在使用壽命方面往往更長。以機械零件為例,粉末冶金齒輪因其高精度和良好的力學性能,在傳動過程中磨損小,使用壽命比傳統加工齒輪更長。這不僅減少了設備維修和更換零部件的頻率,降低了設備停機時間,提高了生產效率,還減少了因頻繁更換零部件帶來的額外采購、安裝和調試成本,從整體上為企業帶來了的綜合經濟效益。金屬粉末燒結板憑借其在材料特性、加工成型、性能表現、應用適配以及環保經濟等多方面的優勢,在現代工業生產中占據著重要地位。從航空航天到汽車制造,從電子信息到醫療器械,從機械制造到環保等眾多領域,金屬粉末燒結板都發揮著不可替代的作用。創新設計核殼結構粉末,內...
金屬粉末燒結技術早可追溯至20世紀初,當時主要用于制備鎢絲等簡單制品。20世紀30年代,德國率先開發出青銅燒結過濾器,標志著金屬粉末燒結板開始進入工業應用領域。這一階段的產品主要采用簡單的壓制-燒結工藝,材料體系以銅、鎳等傳統金屬為主,產品性能相對單一。隨著粉末冶金技術的進步,金屬粉末燒結板進入快速發展期。不銹鋼、鈦合金等新材料體系相繼出現,等靜壓、粉末軋制等新工藝開始應用。產品性能提升,應用領域從簡單的過濾擴展到化工、汽車等多個行業。合成含稀土元素的金屬粉末,有效改善燒結板微觀組織,增強其高溫穩定性與抗氧化性。撫州金屬粉末燒結板20世紀60年代末至70年代初,粉末高速鋼、粉末高溫合金相繼出現...
在現代,各種先進制造技術在金屬粉末燒結板領域得到廣泛應用。除了前面提到的 3D 打印技術和納米粉末冶金技術外,計算機模擬與仿真技術也發揮著重要作用。通過計算機模擬,可以在實際制造之前對粉末的流動、成型過程以及燒結過程中的溫度場、應力場等進行模擬分析,預測產品性能,優化工藝參數,減少實驗次數,降低研發成本和周期。例如,在設計新型航空發動機用金屬粉末燒結板時,利用計算機模擬技術可以提前評估不同工藝參數下燒結板的性能,從而確定比較好的制造工藝。采用微波輔助制備金屬粉末,快速合成且改善粉末燒結特性。河北金屬粉末燒結板生產廠家注射成型技術在金屬粉末燒結板制造中得到進一步發展,特別是在制造高精度、小型化零...
常規燒結:在合適溫度和氣氛(氫氣、氮氣、真空等)下加熱成型坯體,使粉末顆粒結合,提高密度和強度。氫氣氣氛除雜質,氮氣防氧化,真空適用于對氧含量要求高的材料。對于一些對性能要求相對不高的普通金屬粉末燒結板,常規燒結方法較為常用。熱壓燒結:燒結時施壓,在設備中進行,模具用石墨等材料。能降低燒結溫度、縮短時間,獲得更高密度和性能的制品,常用于高性能陶瓷等材料制備,在金屬粉末燒結板制造中也用于一些對性能要求極高的特殊板材。放電等離子燒結(SPS):通過脈沖電流產生放電等離子體和焦耳熱快速加熱燒結。可顆粒表面雜質,表面,升溫快(100 - 1000℃/min)、時間短(幾分鐘到幾十分鐘)、能抑制晶粒長大...
為了改善金屬粉末的成型性能、燒結性能以及終燒結板的性能,常常需要添加一些添加劑。添加劑的種類繁多,作用各不相同。潤滑劑是一類常見的添加劑,如硬脂酸鋅、硬脂酸鈣等。在粉末壓制過程中,潤滑劑能夠降低粉末顆粒與模具壁之間的摩擦力,使粉末在模具中填充更加均勻,減少壓制壓力的不均勻分布,從而提高成型坯體的密度均勻性和表面質量,同時也有利于坯體的脫模,減少模具的磨損,延長模具的使用壽命。粘結劑在一些特殊的成型工藝中起著關鍵作用,如在注射成型中,常用的粘結劑有石蠟、聚乙烯、聚丙烯等。粘結劑能夠將金屬粉末粘結在一起,使混合粉末具有良好的流動性和成型性,便于通過注射機注入模具型腔中形成復雜形狀的坯體。在后續的脫...
等靜壓成型是利用液體均勻傳遞壓力的特性,將金屬粉末裝入彈性模具中,然后放入高壓容器中,通過向容器內的液體施加壓力,使粉末在各個方向上受到均勻的壓力而壓實成型。根據成型時溫度的不同,等靜壓成型可分為冷等靜壓和熱等靜壓。冷等靜壓是在室溫下進行的等靜壓成型方法。其優點是能夠制備形狀復雜、尺寸較大的坯體,且坯體各方向的密度均勻,內部應力小。這是因為在冷等靜壓過程中,粉末在液體均勻壓力的作用下,能夠在模具內自由流動并填充各個角落,從而實現均勻壓實。冷等靜壓常用于制造大型的金屬粉末燒結板,如航空航天領域的大型結構件、化工設備中的大型反應釜內襯等。但冷等靜壓設備投資較大,操作過程相對復雜,生產周期較長。開發...