肥力不足;一、蔬菜缺氮肥:初葉片表現為淡綠色或黃色,不久莖稈也重復同樣的變化。葉色變化通長是從老葉開始,而后逐步擴展到整個葉蔟。二、蔬菜缺磷肥:初表現為生長緩慢,隨后葉片呈褪綠病斑,莖桿變細,富含木質,葉片較小,葉色較深,背面呈紅紫色,延遲結實和果實的成熟。三、蔬菜缺鉀肥:初表現為植株基部具有灰綠色葉片,隨后葉片呈青銅色或黃褐色,葉緣變為褐色,沿葉脈呈現斑點,腐爛或死亡,莖細長,變硬、富含木質。四、蔬菜缺鈣肥:表現為生長緩慢,形成粗大的富含木質的莖,植株頂端及細嫩部位表現明顯。番茄缺鈣,則容易得臍qi腐病,其具體表現為果實頂部(臍部)開始出現圓形褐腐,嚴重時整個果實腐爛,有時伴隨出現黑色霉狀物。黃瓜缺鈣,表現為上部葉片皺縮,不舒展,植株**、生長緩慢,干枯,容易與黃瓜的黑星病相混淆,其主要區別為黑星病病斑易破碎。五、蔬菜缺微肥:出現葉脈間失綠、直立,頂端先受影響而生長緩慢,預示缺鋅。若頂端生長點死亡,根系發育不良,開花蔬菜只開花不結實或開花不正常,預示著缺硼。若新生的葉片已開始失綠,漸漸褪變成白色,預示著缺鐵。 棉籽殼是棉籽經過剝殼機分離剩下的外殼,經過粉碎篩選后形成能夠種植草坪的基質, 容重低,具有一定疏水性。上海壘土固化基質
對基質的物理性質有明顯影響。隨著基質顆粒中小顆粒的逐漸增加,基質的容重增大,對于土壤來說,水分保持在孔隙中,飽和含水量是土壤的孔隙全部充滿水分時的含水量,其數值與土壤的總孔隙度相同。而對于珍珠巖等基質,除孔隙充滿水分外,顆粒本身的表面或內部也吸收水分,所以它的飽和含水量的數值大于總孔隙度。這也從另一個側面說明了基質持水性一般都較好,植物對水分的需求可通過良好的持水性和及時灌溉解決,而通氣性必須靠基質本身的通氣孔隙來解決,因而,基質的通氣性在某種程度上比持水性更為重要。特別是單一基質,顆粒均勻,孔隙也均一,持水性和通氣性的矛盾不協調,而復合基質則能利用不同材料理化性質的特點達到結構和性能的優化。 福建真固化基質循環水黑綿土產品自身 并不需要使用容器承載,可以直接固定于 立面結構上,表面能夠直接和外部空氣環境接觸。
海綿質人造土壤具有十分誘人的廣闊前景,但受各地的自然資源、生產技術、市場環境等因素的限制,海綿質人造土壤發展也不一樣,因此找出一條適合本地區氣候條件、技術水平,而且實用可行的無土栽培之路是**重要的。未來的海綿質人造土壤技術是現代化與自動化結合的一項技術,因此,要求勞動者不*要掌握植物的生長特點,種植方式,還要持續擴充新知識,掌握先進設備,并能熟練應用于實踐中。可代替傳統種植土壤,更加干凈,環保衛生。
50年代無土栽培剛用于生產時選用的基質種類較多,既有有機基質,也有無機基質,但所有基質都是自然材料,無工廠加工產物。60、70年代則以較單一的無機基質為主,配以泥炭,材料中有了工廠加工的產物如泡沫塑料。80年代提供的巖棉培更使無土栽培面積迅速擴大,荷蘭等國的無土栽培面積擴大了幾十倍。90年代有機基質培又重新得到重視,特別是各種廢棄物的利用使無土栽培進入了一個新的發展階段,這主要緣于經濟和環境兩方面的因素,隨著產業化工業化生產規模的提高,各種副產品和廢棄物的排放量日益增多,其中有許多可用于無土栽培生產。表4就是各產業可用于基質培的廢棄物或副產品。GeraldK[12,27]認為無土栽培選用基質的方向應以有機廢棄物的利用為主,實現資源的可循環利用,但他同時也認為泥炭是各種復混基質的基礎,具有不可替代的作用。他比較了泥炭和各種堆肥的性質(表5),從袋培理想基質的要求出發,認為泥炭在將來還是不可缺少的。YChen(1988)和YHadar[38~39]分析了發酵后的葡萄酒渣和沼氣發酵后沖洗過的牛糞及泥炭的理化性質,并進行了比較,栽種番茄、黃瓜、辣椒的結果也表明純酒渣及牛糞作基質比純泥炭作基質的要好,等體積酒渣和牛糞混合后的效果也較泥炭好。 基質容重過大 ,除育苗時不便于操 作外 ,作為商品化育苗也不便于運輸。
目前人工調制基質可以分為4種,不同基質具有不同的水分特征和空氣含量,適應不同的作物類別(圖1)。Ⅰ類基質:具有高度水分有效性和高通氣,其有效水體積大于25%,空氣體積大于>25%。這種基質特性雖然易于從蘚類泥炭調制獲得,但也可以通過多種原料調制得到上述優良性狀。這種理想基質的優點在于水分管理方便,限制因素少。Ⅱ類基質:具有較高水分有效性和較弱通氣性。由于基質顆粒較細,因此比Ⅰ類基質持水性更強。該類基質的主要缺點是有阻斷植物根系氧氣供應的潛在風險,強分解泥炭和草本泥炭就是典型例子。Ⅲ類基質:具有低水分有效性和高通氣。此類基質如果單獨用,需要頻繁的低劑量灌溉。因此,這種基質需要混合Ⅰ類基質和Ⅱ類基質,以便改進其通氣性。許多有機、礦物基質原料具有這些特征,如樹皮(新鮮的和發酵的)樹木纖維、珍珠巖和火山灰。Ⅳ類基質:具有高水分有效性、低水分緩沖性。這類基質的纖維內部含水很少或基本沒有,水主要儲存在顆粒接觸點附近。這些顆粒結構材料包括巖棉、木纖維等。基質對分吸持能量太小,導致水分布不規則,在栽培容器中上部基質中具有極高的氣水比,而在栽培容器的底部氣水比則極低。因為此類基質水分有效性高。 。傳統立體綠化施工方 式,由于種植基質重量與其散狀的物理結構,無法應用于承 載性能較差的屋頂及墻體結構。四川垂直綠化固化基質的好處
復水后的恢復情況可以作為植物能否度過干旱條件的重要指標。上海壘土固化基質
通氣孔隙與持水孔隙的比值稱為氣水比,基質的氣水比是衡量物理性狀的重要指標,與總孔隙度一起更能說明基質的氣水關系。育苗基質的氣水比一般為1∶3-4為宜。司亞平等通過試驗發現:當穴盤育苗基質的比較大持水量大于150%,液態含量60%-70%,氣態含量10%-20%時,可培育出健壯幼苗,并認為,上述三項物理性質結構指標可用來判斷某種材料是否能夠作為培育質量穴盤苗的基質。緩沖作用可以使根系生長的環境比較穩定,即當外來物質或根系本身新陳代謝過程中產生一些有害物質危害作物根系時,緩沖作用將這些危害化解。具有物理化學吸收功能的固體基質都有緩沖作用。無土育苗時,常常會由于營養液中使用了較多的生理酸性鹽,在作物吸收過程中產生較強的酸性(氫離子濃度過高),具有物理化學吸收功能的基質可以將這些有害的活性酸轉變成潛行酸而消除其危害性。一般來講,有機基質比無機基質具有更大的緩沖能力。一般來說, 有機基質的持水性能都很好,但也不 是越大越好,例如椰糠和泥炭其巨大的持水性能致 使在桉樹嫩枝扦插時導致爛根 。相對來說, 基質吸 附的水能被植物吸收利用才有意義 。 上海壘土固化基質