5G 基站天線的注塑加工件,需實現低介電損耗與高精度成型,采用液態硅膠(LSR)與玻璃纖維微珠復合注塑。在 LSR 原料中添加 20% 空心玻璃微珠(粒徑 10μm),通過精密計量泵(計量精度 ±0.1g)注入熱流道模具(溫度 120℃),成型后介電常數穩定在 2.8±0.1,介質損耗 tanδ≤0.002(10GHz)。加工時運用多組分注塑技術,同步成型天線罩與金屬嵌件,嵌件定位公差≤0.03mm,配合后電磁波透過率≥95%。成品在 - 40℃~85℃環境中經 1000 次熱循環測試,尺寸變化率≤0.1%,且耐鹽霧腐蝕(5% NaCl 溶液,1000h)后表面無粉化,滿足戶外基站的長期穩定運行需求。絕緣加工件通過特殊工藝處理,耐電壓強度高,在潮濕環境中仍能穩定工作。不銹鋼沖壓加工件表面處理
精密絕緣加工件的公差控制直接影響電氣設備的安全間距,如用于新能源汽車充電樁的絕緣隔板,其孔徑尺寸需控制在 ±0.03mm 以內,以確保帶電部件與金屬外殼的電氣間隙≥8mm。加工過程中采用五軸數控加工中心,通過恒溫車間(23±1℃)環境控制,配合乳化液冷卻系統,避免材料熱變形。成品需經過局部放電檢測,在 1.5 倍額定電壓下,放電量≤5pC,同時通過 UL94 V - 0 級阻燃測試,遇明火時燃燒速度≤76mm/min,離火后 10 秒內自熄,保障充電樁在復雜工況下的使用安全。杭州注塑加工件定制注塑加工件的加強肋分布均勻,有效提升抗彎曲變形能力。
5G 基站用低損耗絕緣加工件,采用微波介質陶瓷(MgTiO)經流延成型工藝制備。將陶瓷粉體(粒徑≤1μm)與有機載體混合流延成 0.1mm 厚生瓷片,經 900℃燒結后介電常數穩定在 20±0.5,介質損耗 tanδ≤0.0003(10GHz)。加工時通過精密沖孔技術(孔徑精度 ±5μm)制作三維多層電路基板,層間對位誤差≤10μm,再經低溫共燒(LTCC)工藝實現金屬化通孔互聯,通孔電阻≤5mΩ。成品在 5G 毫米波頻段(28GHz)下,信號傳輸損耗≤0.5dB/cm,且熱膨脹系數與銅箔匹配(6×10/℃),滿足基站天線陣列的高密度集成與低損耗需求。
智能家居用低噪音注塑加工件,采用改性尼龍 66 與石墨烯納米片復合注塑。添加 3% 石墨烯(層數 3-5)通過真空攪拌(真空度 - 0.09MPa,溫度 80℃)均勻分散,使材料摩擦系數降低 25% 至 0.3,磨損量≤5×10mm。加工時運用微發泡注塑技術(注射壓力 140MPa,氮氣壓力 8MPa),在齒輪部件中形成均勻閉孔結構(泡孔直徑 50μm),噪音值降低 8dB 至≤45dB。成品經 10000 次循環運轉測試,齒面磨損量≤0.01mm,且在 40℃、90% RH 環境中吸濕率≤0.8%,確保智能家居傳動部件的低噪與長壽命。這款注塑件表面光潔度達 Ra1.6,無需二次打磨,適用于外觀件批量生產。
醫療微創手術器械的注塑加工件,需符合 ISO 10993 生物相容性標準,選用聚醚醚酮(PEEK)與抑菌銀離子復合注塑。將 0.5% 納米銀離子(粒徑 50nm)均勻混入 PEEK 粒子,通過高溫注塑(溫度 400℃,模具溫度 180℃)成型,制得抑菌率≥99% 的器械部件。加工中采用微注塑技術,在 0.3mm 薄壁結構上成型精度達 ±5μm 的齒狀結構,表面經等離子體處理(功率 100W,時間 30s)后粗糙度 Ra≤0.2μm,減少組織粘連風險。成品經 1000 次高壓蒸汽滅菌(134℃,20min)后,力學性能保留率≥95%,且細胞毒性評級為 0 級,滿足微創手術器械的重復使用要求。精密研磨的絕緣件平面度高,與其他部件貼合緊密,減少漏電風險。一體加工件表面噴涂工藝
絕緣加工件選用環保型絕緣材料,符合 RoHS 標準,安全無污染。不銹鋼沖壓加工件表面處理
在高頻電子設備中,絕緣加工件的介電性能至關重要,聚四氟乙烯(PTFE)加工件憑借≤2.1 的介電常數和≤0.0002 的介質損耗,成為微波器件的較好選擇材料。加工時需采用冷壓燒結工藝,將粉末在 30MPa 壓力下預成型,再經 380℃高溫燒結成整體,避免傳統注塑工藝產生的內應力。制成的絕緣子在 10GHz 頻率下,信號傳輸損耗≤0.1dB/cm,且具有 - 190℃至 260℃的寬溫適應性,即便在極寒的衛星通訊設備或高溫的雷達發射機中,也能保證電磁波的無失真傳輸。不銹鋼沖壓加工件表面處理